
Accurate Real-Time Labeling of Application Traffic
Sebastian Schäfer

schaefer@itsec.rwth-aachen.de
RWTH Aachen University

Alexander Löbel
loebel@itsec.rwth-aachen.de
RWTH Aachen University

Ulrike Meyer
meyer@itsec.rwth-aachen.de
RWTH Aachen University

Abstract—In this paper, we present the design and imple-
mentation of ATLAS, a novel tool for automatically labeling
network packets with the process responsible for them. Our tool
is able to label all kinds of outbound packets based on Windows
events and TCP stream information with ground-truth accuracy.
Additionally, it is able to label DNS packets with the correct
process name instead of just the DNS resolver. Using ATLAS,
it is possible to create large datasets, e.g., to create software
fingerprints or train machine learning classifiers. Another use-
case is to inspect the network traffic of a machine to determine
which application is communicating with whom. We evaluate the
performance considering different load scenarios to demonstrate
the real-time capacity of ATLAS. Additionally, we analyze the
communication endpoints of a Windows 10 host and compare
the results before and after disabling all privacy related settings.

I. INTRODUCTION

Many tasks in the area of network analysis and network
security require the availability of large datasets. While one
challenge is to collect such datasets, another challenge is
to create labels with ground-truth accuracy. Especially for
network-based application profiling or anomaly detection, the
correct application or process that was responsible for each
network packet is of interest. For example, to train a machine
learning classifier for detection of a specific application or
malware, correct labels of the training data are necessary. Also,
it is generally not transparent how applications communicate
via the network by simply monitoring the outgoing traffic of
a host, e.g., whether an application transmits privacy critical
activity data.

We present the design of Application Traffic Labeling Soft-
ware (ATLAS), a tool for labeling outbound network packets
on Windows with the application that produced them. ATLAS
captures all outbound network traffic on a host and outputs a
process-label for individual packets. This is done by parsing
system logs to match individual system events to correspond-
ing network packets to derive the responsible process and by
keeping track of individual TCP connections for consistent
labels. Additionally, ATLAS is able to assign correct labels
of processes initiating DNS queries, instead of labeling all
outgoing DNS traffic with the operating system’s resolver. Our
aim is to label packets with ground-truth accuracy. We evaluate
the real-time capabilities of ATLAS in different load scenar-
ios. Additionally, we demonstrate its capabilities of adding
transparency to outbound network traffic, by comparing the
network communication of Windows processes, with privacy
and diagnostic settings enabled and disabled.

II. RELATED WORK

Many approaches for network traffic classification [9], [13],
[7], especially those based on machine learning, need datasets
of application or malware traffic. While some approaches use
unsupervised learning which doesn’t require labeled training
data, others rely on correctly labeled data which has many
challenges [4]. This is especially important because ground-
truth accuracy of labels has significant impact on the perfor-
mance of classifiers, e.g., for malware detection [1].

Not much work was done when it comes to labeling
individual packets with application or process names. In [14],
the authors developed a tool that uses socket hooks and
Network Driver Interface Specification (NIDS) hooks to get
information about applications generating socket calls which
is directly written to the packet headers. The tool does not
seem to be publicly available and was developed for older
versions of Windows. Because such socket hooks do not reveal
information about applications initiating DNS lookups, we use
system event logs for labeling. This allows us to label DNS
queries with the initiating application instead of the operating
systems resolver, which eventually sends the network packets.

Many existing approaches only apply labels to whole net-
work traces instead of labeling individual packets, e.g., based
on clustering. In [3], the authors use a semi-supervised labeling
approach for network flows using clustering and self-training
based on a few existing labels and apply this to the unlabeled
data portion. In [2], the authors combine unsupervised and
supervised learning for labeling network anomaly detection
datasets by clustering the data, creating labels, and then
training a model for labeling in a supervised fashion.

Additional approaches rely on existing detection systems
to label network data after it was captured, which depends
heavily on the accuracy of such systems. In [6], the authors
retransmit captured data in a controlled environment and label
it using an IDS like Snort. Similarly, in [8] the approach is to
train a classifier for labeling based on the output of a variety
of antivirus software combined with majority voting.

III. DESIGN AND IMPLEMENTATION

In the following, we describe the design of ATLAS and
its components. We set the following requirements as design
goals for ATLAS. Foremost, it should capture ground-truth
labels with high confidence, i.e., it does not introduce false
application labels. Then, it should have high coverage and not
miss short-lived connections. Finally, we want to be able to



label DNS requests not with the system’s DNS resolver but
with the application that requested the DNS lookup.

The design to achieve those goals is depicted in Figure 1.
ATLAS captures all outgoing network traffic and stores it as a
Pcap file, together with a CSV file containing the application
labels for each packet. ATLAS is composed of three main
threads. The event capture thread makes use of wtrace [10], a
command-line tool that reports Windows events system-wide.
We use the TCP and UDP handlers of wtrace to log and parse
all reported network events. Each network event contains a
timestamp, the application generating the event including its
process ID and the source and destination IP addresses and
ports. The parsed information is fed into the event queue for
each event. Note that the events are reported in-order. Hence,
the queue is always sorted by the event arrival time.

For the packet capture thread, we use the command-line
network capture tool tshark [12] to record outbound network
packets on a given interface. For each packet, we parse the
timestamp, the frame number, the source and destination IP
address and ports. This information is put into the packet
queue which is again ordered, based on the packet timing.

To label the network packets with the application responsi-
ble for generating them, we use the information given by the
event capture thread as follows. The label thread consumes
events from the event queue and for each event, it searches
for a matching network packet in a sliding window manner.
This is realized by pre-selecting only those packets from the
packet queue that have a timestamp tpacket in the interval
[tevent, tevent + x] where tevent denotes the timestamp of the
current event and x is a user-configurable delay in seconds.
The lower bound exists because packets are sent via the
network interface only after the corresponding system-wide
network event has occurred. The rationale behind the upper
bound is to have plausible confidence in matching the correct
packet to the event. Hence, the default value of x is set to 1
second to also take account for larger than usual delays.

For these pre-selected packets we consider only those where
the source and destination IP addresses and ports are identical
to the values of the current event. From these packets, we
select the packet with the smallest difference between tpacket
and tevent. If there is such a packet, the application name
from the event is used as application label for this packet and
is written to the CSV file. To re-identify the packet in the
Pcap file of the collected traffic, the CSV file contains the
corresponding frame numbers.

If there is no packet fulfilling these conditions, the event
is dropped and the next one is considered. We argue that
matching based on the IP addresses and port numbers together
with a small allowed delay between Windows event and sent
network packet leads to having high confidence in the accuracy
of the labeling. However, this confidence decreases the more
the allowed delay x is increased. If x is large, a different
application might be re-using this IP and port combination,
leading to falsely labeled packets. Our focus was to label
outbound traffic accurately because inbound traffic is not
entirely dependent on the locally installed applications, but

wtrace

tshark
network
packet

windows
event

teventtevent+x

event queue

packet queue

Event Capture Thread

Packet Capture Thread

Label Thread

Fig. 1. Simplified design of ATLAS. The event capture thread logs Windows
events and the packet capture thread captures information of outbound network
packets. The label thread attempts to match each event to a packet.

on the external communication endpoint.
In addition to labeling via event-packet matching, we make

use of TCP streams for yet unlabeled packets that occurred
earlier than the currently considered event. Once a packet
receives a label through matching, we check if it has a TCP
stream number. If so, we save the stream number together
with the application name. Then, just before discarding the
unlabeled packets earlier than the currently considered event,
we check whether the packet has a stream number and if we
already know an application label for the stream. If there is a
stream label, we set the application of this packet to the same
label as the other packets in the stream.

This allows us to label packets which we cannot correlate to
an event, once we are sure that no future event can possibly
match. Some packets, e.g., TCP keep-alive packets, do not
trigger an event. However, by tracking TCP streams, we can
still assign labels as long as we previously found a label for
the same stream. To avoid having an ever-growing memory
load, the storing of stream number and application pairs is
realized through a ring buffer with configurable size.

A special case occurs when considering DNS requests. The
application that is responsible for sending a DNS query is
the DNS resolver, i.e., the Windows system process svchost.
Hence, using the information from the reported event, all
DNS requests would be assigned svchost as application label.
However, it is more interesting to know about the application
triggering the DNS request rather than the operating system’s
DNS resolver. Hence, in the case of DNS packets, we imple-
ment another matching mechanism with the help of Windows
DNS logs as depicted in Figure 2. In the case of a DNS
request with the svchost label, the label thread queries the
Windows DNS logs with the domain and the timestamp of the
DNS request. However, the matching DNS log entry contains
only the process ID of the requesting application at that time.
Hence, we need to match process ID and application name.

This is realized by another thread that continuously polls
the mapping between application name and process IDs of
the currently active processes with the help of the internal
Windows tool tasklist. Every s seconds, tasklist is called and
we save the process ID and the corresponding app name
together with the timestamp when this was polled. The polling



queried domain 
timestamp

Label
Thread

process ID

tasklist

PID Polling Thread

s seconds

process ID

application name

DNS logs

Fig. 2. DNS request labeling of ATLAS. The label thread looks up the
process ID responsible for the DNS request, which is used to look up the
corresponding application name using tasklist.

interval s can be set by the user and its default value is set
to 0.5 seconds. We use a ring buffer with configurable size
again to avoid unnecessary memory consumption. To get the
application name, we choose the entry with the smallest timing
difference to the DNS query timestamp – similar as with the
event-packet matching earlier. If this is successful, the DNS
request is labeled with the found application and stored into
the CSV file. If we cannot find a matching application, e.g.,
because the polling frequency is too low, leading to missing
short-lived processes, it is logged as “app name not found”.

Lastly, we implemented a basic QT GUI which allows the
user to choose the capturing interface, output paths for the
CSV, Pcap, and logging files, as well as earlier mentioned val-
ues such as the maximum delay between events and packets.
Furthermore, we include a statistics page showing the portion
of currently labeled packets and the number of events and
packets in their respective queues in real-time.

IV. EVALUATION

In this section, we evaluate the performance of ATLAS and
discuss its capabilities by measuring the impact of Windows
10 privacy settings on the network behavior. To measure the
performance we used the Windows tool perfmon which allows
capturing processor time as well as memory consumption
based on private bytes and working set per running process.
The processor time measures the time in percent that a logical
core is executing a non-idle thread [11]. Hence, a value of
100% means that one core is under full load, while a value
of 800% means that all cores of a 8-core CPU are under full
load. The private bytes are those bytes that are allocated by
the process without considering the memory that is shared
with other processes [5]. The number of bytes given by the
working set [5] is equivalent to the displayed memory usage
in the task manager which equals the amount of pages the
process is using in memory, excluding the ones paged out [5].
By that, we cannot measure the memory consumption exactly.
However, both values represent a reasonable approximation.

Using perfmon with a sampling interval of 1 second, we
captured those measures while running ATLAS in three dif-
ferent load scenarios on a Windows VM for an hour each. The
idle scenario consisted of starting ATLAS and perfmon and not
interacting further with the VM for one hour. The light load
scenario consisted of web browsing to simulate typical office

TABLE I
PERFORMANCE MEASUREMENTS OF ATLAS IN THREE LOAD SCENARIOS

Processor Time [%] Private bytes [MB] Working set [MB]

min avg max min avg max min avg max

Idle load 0 2.5 100.1 215.4 271.6 317.5 283.3 337 388.6
Light load 0 23 129.7 217.5 327.2 513.3 285 444 583.5
High load 0 96.2 183 138 894.9 1643.1 165.8 964 1706.7

behavior. For the high load scenario, we initiated a TeamViewer
remote control session where the VM was remotely controlled
while transmitting its screen and joined a Zoom call including
screen sharing and webcam transmission. All three scenarios
were carried out on a Windows VM with 8 cores on an AMD
Epyc 7702P CPU and 16 GB of main memory. The resulting
packets per second (pps) were 0.36 pps (idle), 26.5 pps (light),
and 262.1 pps (high).

Table I reports the minimum, average, and maximum of the
processor time, the private bytes and the working set used
by ATLAS in each of the three scenarios. Since ATLAS is
composed of a Python program together with wtrace and
tshark, we added up the values of each sub-process. In all
scenarios, ATLAS managed to keep up with labeling the
traffic, i.e., on average the event and packet queues were
emptied faster than they were filled. In some instances, e.g., in
the light load scenario when a new website was visited, it took
multiple seconds to process all new events before catching
up. This was achieved utilizing at most one core, with the
exception of the maximum processor time in the browsing
scenario where ATLAS utilized 130% processor time during
a peak. However, in case of much higher traffic volume than
the high load scenario, multi-core support for ATLAS would
be beneficial, since the average CPU time was already at 97%,
and the labeling of ATLAS is currently restricted to one core.
The 183% peak CPU time was possible because, in addition
to the single core for labeling, tshark and wtrace run using
individual threads. In the high load scenario we measured
a peak size of the working set of 1 707 MB. The average
memory load was less than 1 000 MB with both metrics. We
conclude that ATLAS is capable of labeling even high traffic
loads in real-time, possibly with a small delay, while utilizing
less than one CPU core on average.

We now describe a use-case for such labeled data, besides
creating datasets for application profiling or malware detec-
tion. For this, we built statistics for each endpoint a host is
communicating with by parsing the DNS requests and their
responses which we captured in addition to outbound traffic
for this experiment. As a result, we have a list of IPs and their
corresponding domains that each application communicated
with, including the amount of bytes sent to each IP or domain.
We use those statistics to compare two settings. First, we set
up a VM with a freshly installed Windows 10 and default
settings and installed ATLAS. For the second setting, we
cloned this machine and disabled all privacy critical settings.
This included disabling ad tracking, location tracking, typing
personalization, diagnostics data, background apps, and all



Fig. 3. Statistical data comparing the results of ATLAS for the default and
privacy setting of Windows 10.

access to personal information from apps. On the first VM we
used a Microsoft account, while we opted for a local account
in the privacy focused setting.

The goal was to measure the difference in outgoing data
when configuring Windows as restrictively as possible. To
ensure that both VMs produce comparable data, we started
both machines simultaneously without further interaction and
left them running 24 hours. The collected data shows for each
process which IPs it communicated with, the traffic volume,
which domains it queried and which IPs correspond to each
domain. In the following, we discuss whether the applied
settings had any impact on the network behavior.

The results are depicted in Figure 3. Overall, the default VM
sent more packets than the privacy VM. The system process
svchost was responsible for 22 687 and 22 616 packets, respec-
tively. Hence, the number of packets sent by other processes
is more than twice as large in the default VM. Also, the
privacy VM queried considerably less domains, communicated
with less IPs, and and had less applications with network
activity in general. On the privacy VM, 10 applications did
not communicate compared to the default VM, namely File-
CoAuth, HxTsr, OneDriveStandaloneUpdater, RuntimeBro-
ker, SearchApp, YourPhone, backgroundTaskHost, explorer,
smartscreen, and tasklist. For example, tasklist belongs to
the task manager and is even used by ATLAS to match
process IDs and names. On the default VM, 400 KB of
data were sent to multiple IPs associated with Microsoft.
RuntimeBroker is a Windows process that checks declared
permissions of Windows apps, e.g., permissions to use the
camera. The privacy VM not sending data was likely a direct
result of restricting all applications not to use such resources.
Other processes belong to services like OneDrive, Outlook
and Search. Presumably, on the default VM these services
have sent diagnostic data. However, because most traffic was
encrypted, we were not able to verify this. Nevertheless, the
IPs and corresponding domains the applications communicated
with give more information about their potential use. E.g.,
activity.windows.com was accessed by svchost only on the
default VM and can be associated with activity tracking.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the implementation and eval-
uation of ATLAS, a tool for Windows that is able to label
network packets with application names in real-time with
ground-truth accuracy. The tool will become open source
alongside the publication of this paper. ATLAS makes use
of different system event logs to assign the labels, including

precise application labels for DNS queries instead of the OS
resolver. Additionally, packets that cannot be associated with
an event can still be labeled based on TCP stream information.
We evaluated the performance based on three load scenarios
and showed that ATLAS manages to label high traffic volume
while utilizing less than one CPU core and less than 1000
MB of memory on average. Furthermore, we demonstrate
its capabilities by analyzing the impact of Windows privacy
settings on network connections. For future work, we envision
support for Linux and the addition of multi-core support to
allow for real-time labeling of even higher traffic volume.
Also, we want to add version information to the labels and
group the process labels into an application label based on
paths of the process executables. Additionally, we plan on
correlating inbound traffic to specific processes.

VI. ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 833418. Alexander Löbel was
supported by the research project ”North-Rhine Westphalian
Experts in Research on Digitalization (NERD II)”, sponsored
by the state of North Rhine-Westphalia – NERD II 005-2201-
0014.

REFERENCES

[1] B. Anderson and D. McGrew, “Machine Learning for Encrypted Mal-
ware Traffic Classification: Accounting for Noisy Labels and Non-
Stationarity,” in Conference on Knowledge Discovery and Data Mining.
ACM, 2017.

[2] S. Baek, D. Kwon, J. Kim, S. C. Suh, H. Kim, and I. Kim, “Unsupervised
Labeling for Supervised Anomaly Detection in Enterprise and Cloud
Networks,” in 4th International Conference on Cyber Security and Cloud
Computing. IEEE, 2017.

[3] A. Fahad, A. Almalawi, Z. Tari, K. Alharthi, F. S. Al Qahtani, and
M. Cheriet, “SemTra: A Semi-Supervised Approach to Traffic Flow
Labeling with Minimal Human Effort,” Pattern Recognition, vol. 91,
pp. 1–12, 2019.

[4] J. Guerra, C. Catania, and E. Veas, “Datasets are not Enough: Challenges
in Labeling Network Traffic,” Computers & Security, p. 102810, 2022.

[5] R. Mariani. (2004) Performance Planning. Accessed: 08.04.2022.
[Online]. Available: https://docs.microsoft.com/en-us/archive/blogs/
ricom/performance-planning

[6] K. Masumi, C. Han, T. Ban, and T. Takahashi, “Towards Efficient
Labeling of Network Incident Datasets Using Tcpreplay and Snort,” in
Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy, 2021.

[7] A. W. Moore and K. Papagiannaki, “Toward the Accurate Identification
of Network Applications,” in Passive and Active Network Measurement.
Springer, 2005.

[8] S. Nari and A. A. Ghorbani, “Automated Malware Classification based
on Network Behavior,” in International Conference on Computing,
Networking and Communications. IEEE, 2013.

[9] T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet
Traffic Classification using Machine Learning,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[10] S. Solnica, wtrace, https://wtrace.net/documentation/wtrace/.
[11] H. Tarra. (2012) Understanding Processor (% Processor Time) and

Process (%Processor Time). Accessed: 08.04.2022. [Online]. Available:
https://social.technet.microsoft.com/wiki/contents/articles/12984.
understanding-processor-processor-time-and-process-processor-time.
aspx

[12] tshark(1) Manual Page, https://www.wireshark.org/docs/man-pages/
tshark.html.



[13] S. Zander, T. Nguyen, and G. Armitage, “Automated Traffic Clas-
sification and Application Identification using Machine Learning,” in
Conference on Local Computer Networks 30th Anniversary. IEEE,
2005.

[14] C. Zhao, L. Peng, B. Yang, and Z. Chen, “Labeling the Network Traffic
with Accurate Application Information,” in 8th International Confer-
ence on Wireless Communications, Networking and Mobile Computing.
IEEE, 2012.


