
Security Analysis of BigBlueButton
and eduMEET

Nico Heitmann(B), Hendrik Siewert, Sven Moog, and Juraj Somorovsky

Paderborn University, Paderborn, Germany

heitnico@mail.upb.de

Abstract. Video conferencing systems have become an indispensable
part of our world. Using video conferencing systems implies the expecta-
tion that online meetings run as smoothly as in-person meetings. Thus,
online meetings need to be just as secure and private as in-person meet-
ings, which are secured against disruptive factors and unauthorized per-
sons by physical access control mechanisms.

To show the security dangers of conferencing systems and raise gen-
eral awareness when using these technologies, we analyze the security of
two widely used research and education open-source video conferencing
systems: BigBlueButton and eduMEET. Because both systems are very
different, we analyzed their architectures, considering the respective com-
ponents with their main tasks, features, and user roles. In the following
systematic security analyses, we found 50 vulnerabilities. These include
broken access control, NoSQL injection, and denial of service (DoS). The
vulnerabilities have root causes of different natures. While BigBlueBut-
ton has a lot of complexity due to many components, eduMEET, which
is relatively young, focuses more on features than security. The sheer
amount of results and the lack of prior work indicate a research gap that
needs to be closed since video conferencing systems continue to play a
significant role in research, education, and everyday life.

1 Introduction

The COVID-19 pandemic forced millions of people worldwide to stay at
home [19]. As a result, meetings, classrooms, and private events were held online,
and the demand and interest for online video conferencing systems increased [42].
In April 2020, Zoom Video Communications reported that their number of users
had significantly increased due to the pandemic. While Zoom had 10 million
daily users in December 2019, it had 200 million daily users in March 2020.
Besides Zoom, there are numerous other video conferencing services, such as
Microsoft Teams, Webex by Cisco, Google Meet, Skype, Zoho Meeting, Blue-
Jeans, LifeSize, Whereby, and many others [30].

Security of Video Conferencing Systems. With the rise of video conferencing
systems, security and privacy concerns grew. In April 2020, Google, SpaceX, and
others banned Zoom over privacy concerns regarding its end-to-end encryption
(E2EE) [22,38,45]. To eliminate vulnerabilities and increase security, several
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14585, pp. 190–216, 2024.
https://doi.org/10.1007/978-3-031-54776-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54776-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-54776-8_8

Security Analysis of BigBlueButton and eduMEET 191

video conferencing providers, such as Zoom Video Communications, Inc. (Zoom)
and 8x8, Inc. (Jitsi Meet), started bug bounty programs [1,48]. This measure
bears fruit; Zoom received 401 reports and awarded $1.8 million in 2021 [12].

The demand for security and privacy in conferencing technologies also led
to open-source video conferencing systems gaining popularity. Open-source soft-
ware allows one to analyze the source code and self-host conferencing servers,
which requires know-how but has the advantage that data remains on known
servers. This is especially important in deployments that need to comply with
European regulations for the protection of personal data. For example, in 2022,
Germany’s federal state Rhineland-Palatinate forbade the usage of Microsoft
Teams in schools because it is not compliant with the General Data Protection
Regulation (GDPR) [16].

Towards Systematic Security Analysis of Video Conferencing Systems. Despite
the importance of security and privacy in video conferencing systems, there is,
to our knowledge, no systematic research on the security of video conferencing
systems yet. To gain insights into the attack surface associated with video con-
ferencing systems, we selected two open-source systems widely used in research
and education: BigBlueButton and eduMEET.

BigBlueButton has been developed since 2007 with the goal of giving teachers
and researchers the ability for a new style of hybrid teaching where BigBlueBut-
ton should serve as an online classroom [27]. Similarly to other video conferencing
systems, BigBlueButton gained popularity during the COVID-19 pandemic. It
has, for example, become the primary mode of communication and learning in
schools in France [7]. The recommendation was issued by the French Ministry of
Education, which is responsible for 65,000 schools serving 12 million students.
Even after the pandemic, BigBlueButton remained the recommended education
tool in France [5] and several German federal states [16,46].

eduMEET was released in April 2020 by GÉANT, a European research net-
work [15]. According to GÉANT, the release was rapidly accelerated due to
lockdown measures and the need for an alternative and trustworthy video con-
ferencing solution [26]. GÉANT’s main arguments for having their video confer-
encing system were that it is from their community, self-hosted, and therefore
the traffic stays within their network. Thus, they consider the tool trustworthy
and cost-efficient compared to commercial alternatives [15].

To analyze the security of the chosen video conferencing systems, we must
first understand how both systems are composed and which features they pro-
vide. This leads us to our research questions:

RQ1 Which architecture concepts do BigBlueButton and eduMEET follow?
RQ2 What are the common features and user roles, and how are permissions

assigned to individual features?
RQ3 What types of attacks result from the given architecture, features, and user

roles?

Our Approach. To perform a systematic analysis of a video conferencing system,
we need to know how it is structured. That includes its components, as well as
their responsibilities and tasks. Therefore, we break down the complex structures

192 N. Heitmann et al.

of each system to form shared components with their main tasks. Furthermore,
we examine the connection between features, permissions, and user roles that
are common to video conferencing systems. Using this information, we define
our attacker model and use it to perform a source code analysis, for which
we follow the data flow within and between components. Thus, we can check
whether the components adhere to their responsibilities and correctly enforce
user permissions as assigned by the user roles.

Results. Besides both being web video conferencing systems with similar user
roles, the architectures of BigBlueButton and eduMEET differ drastically. Big-
BlueButton has many features with a very complex structure, while eduMEET is
more minimal in comparison. Our architecture analyses laid the groundwork for
the systematic security analyses of both conferencing systems; we found 7 vul-
nerabilities and 7 bugs. Among them are classic security flaws like broken access
control, NoSQL injection, and DoS, but also vulnerabilities that are feature-
specific and could be detected due to our in-depth architecture analyses.

Contributions. In summary, we make the following contributions:

– We provide a structured security analysis of two modern open-source video
conferencing systems: BigBlueButton and eduMEET.

– We present a common structure of both systems and introduce their main
components, features, and user roles.

– With our security analyses, we were able to identify 57 vulnerabilities and
bugs. These range from attacks targeting confidential meeting chats, partici-
pant lists, and streams to impersonation and DoS attacks.

Responsible Disclosure. We responsibly disclosed all vulnerabilities and bugs to
the developers of BigBlueButton and eduMEET.

2 Background

In this section, we cover WebRTC, which both analyzed video conferencing sys-
tems use as their method for real-time audio and video transfer.

2.1 WebRTC

WebRTC [8] is a suite of protocols for real-time communication (RTC) over
the Internet. For web applications, it defines a JavaScript API to access media
devices and to manage WebRTC connections. WebRTC supports media streams
and message-based transfer of arbitrary data. It supports peer-to-peer (P2P)
connections, where two users exchange data directly, without the data flowing
over a server.

Before two peers can establish a direct WebRTC connection, they need to
exchange information using a signaling server. They negotiate the initial media
streams, with configuration such as codecs and bitrate, in the form of a Session

Security Analysis of BigBlueButton and eduMEET 193

Description Protocol (SDP) offer and answer [6]. These also contain the informa-
tion needed for opening the direct connection, including NAT traversal (Inter-
active Connectivity Establishment (ICE) candidates). Once a direct connection
has been established, the peers can transfer the negotiated streams. WebRTC
currently supports only one media transport protocol, DTLS-SRTP [25].

2.2 WebRTC Architectures in Conferencing Systems

In a typical conferencing setting, a group of users exchanges media data, for
example, audio and camera streams. Using a P2P architecture for broadcasting
media streams minimizes latency and avoids server bandwidth overhead. How-
ever, this approach does not scale well due to the limited bandwidth of end users.
Therefore, using a P2P architecture is often infeasible for conferences.

Instead of using a P2P architecture, conferencing systems implement servers
that can receive and redistribute the media streams for each user. There are two
types of architectures a WebRTC server can follow. In the Selective Forwarding
Unit (SFU) architecture, the server distributes incoming streams unmodified. If
the server processes and combines incoming media streams, the architecture is
called Multipoint Control Unit (MCU). This lowers the bandwidth requirements
for the clients in exchange for processing on the server.

3 Analysis Method

Due to the lack of systematic analyses of video conferencing systems, there is no
methodology for us to use and adapt. Thus, we started developing an approach
that was further refined during our analysis. The structure of our paper reflects
the steps of our analysis.

In the first part of this section, we outline the procedure for analyzing the
architecture and user roles of the chosen systems. The second part of this section
deals with the structured source code analysis. We assume attackers can reach
a conferencing server over the network, with the server operator being a trust-
worthy party. The source code analysis requires a detailed attacker model based
on the architecture, so we defer the detailed attacker model to Sect. 6.

3.1 High-Level Analysis

In the primary analysis, we use the respective documentation and the publicly
available source code to get a broad overview of the respective system. Getting an
overview helps to assess the complexity of the system, as well as understanding
the functionality and use case for the video conferencing system (e.g., education).
We divide the primary analysis into the following steps.

Architecture and Components (RQ1). The first step contains the architecture of
the respective system (see Sect. 4). Next to the main components of the architec-
tures, such as web client and server, we are especially interested in the WebRTC
components and the messaging between components since these aspects facilitate
the understanding of the systems the most.

194 N. Heitmann et al.

Conferencing Features (RQ2). Then, we look at the features that each system
offers (see Sect. 5.1). The features are needed for our analysis because each fea-
ture interacts with a meeting in a certain way (e.g., removing users from a
meeting). These interactions are mostly limited to certain groups of users, such
as moderators, and therefore require access control.

User Roles (RQ2). Finally, we check the user roles and permissions (see
Sect. 5.2). We map these to the features that we gathered in the previous step.
This allows us to get an overview and understanding of the system, which facil-
itates a more detailed source code analysis.

3.2 Source Code Supported Security Analysis

In our source code analysis, we chose a manual approach since automation does
not work in our case (see Sect. 8.3). As the first step, we perform a detailed
analysis of the implementation. This shares commonalities with the primary
architecture analysis, but we now focus on the internal implementation of each
component. We manually validate that the implementation matches the docu-
mentation and our understanding of the features. This step also results in the
identification of internal assumptions, for example, which parts of internal mes-
sages the components treat as trustworthy. All components have the responsi-
bility to satisfy these often implicit internal assumptions.

Because almost all server logic gets triggered by user actions, we perform a
data flow analysis on each possible user action. We confirm the overall behavior
in practice, for example, via the browser’s developer tools. During this data
flow analysis, we consider the responsibilities of each component (e. g., access
control on the conferencing server). Whenever it is not certain that an aspect
of the conferencing system correctly adheres to the responsibilities, we need to
investigate further.

When investigating a potential vulnerability, we may move directly to build-
ing a proof of concept. Otherwise, we may also re-evaluate whether it is handled
elsewhere than expected. In either case, we conclude when we have either demon-
strated an exploit or have complete reasoning for the behavior to be correct.

4 Architectures of the Analyzed Open-Source
Conferencing Systems (RQ1)

We answer RQ1 by analyzing the architectures of BigBlueButton and
eduMEET. From both systems, we first derive a shared architecture that gives a
high-level overview of common components and outlines their main tasks, which
not only helps understanding the analyzed video conferencing systems, but also
might facilitate future work. Then, we describe the implementation specifics of
BigBlueButton and eduMEET. Finally, we compare the feature sets they offer
to users.

Security Analysis of BigBlueButton and eduMEET 195

Fig. 1. Shared architecture of the analyzed video conferencing systems, showing the
three components “web client”, “conferencing server”, and the “WebRTC component”
with their main tasks. Arrows represent communication, and media streams are marked
in green. The dotted arrows mark the creation of the WebRTC connection. The cylin-
ders represent data storage.

4.1 Shared Architecture

We first focus on commonalities of the analyzed video conferencing systems by
deliberately abstracting from specific features of BigBlueButton and eduMEET.
This results in the architecture of a video conferencing system with minimal fea-
tures. Figure 1 shows a summary of the components of such a video conferencing
system. In the following, we describe the main components of the shared architec-
ture. Then, we describe how each analyzed system implements each component
with its uniqueness.

Web Client. The web client is responsible for three main tasks. The first main
task, closest to the user, is rendering the user interface (UI). The UI allows
users to interact with the meeting. The web client updates the UI in response
to interactions triggered both by the local user and actions by other users in
the meeting. Such actions include a user enabling their camera or sending a
chat message. The web client is also responsible for displaying the conferencing
system’s features, such as video chat. The features depend on the conferencing
system (see Sect. 5.1).

The second main task of the web client is handling media streams. This
includes establishing a WebRTC connection (see Sect. 2.1), where one peer is
the web client and the other peer is the WebRTC component. Once a streaming
session has been established, the peers can start sending and receiving media

196 N. Heitmann et al.

data. On the client side, incoming media streams are connected to the UI, where
the videos are displayed. The client also displays its outgoing video streams.

The third main task is processing and sending meeting state updates. When
a user performs actions in the UI, the client sends user actions, i. e., intended
changes to the meeting state, to the server. If the user’s intended change is valid,
the server notifies the web clients of the changes to the meeting state, which we
refer to as an event. When a web client receives an event, it processes it and
updates the local state in near real-time. Possible events include receiving new
chat messages, changes to permissions, muting audio, or starting and stopping
a video. The possible events depend on the features of the conferencing system.

Server-Side Components. The analyzed conferencing systems consist of two
server-side components: the conferencing server and a WebRTC component.

Conferencing Server. The first task of the conferencing server is processing
incoming user actions. This involves three main steps. First, the server per-
forms access control by checking whether the user may perform the requested
user action. Second, if the action is valid, the conferencing server executes it.
This may involve additional processing by the server and results in changes to
the meeting state. Finally, the server publishes events to the clients.

The second task of the conferencing server is managing streaming sessions.
For this purpose, it controls the WebRTC component, which may be an external
media server or embedded in the conferencing system as a library. The confer-
encing server participates in establishing streaming sessions by creating them
in the WebRTC component and providing communication between the client
and WebRTC component for the initial negotiation. The conferencing server is
responsible for access control by mediating the initial communication. After the
negotiation, the WebRTC component and client establish a direct communica-
tion channel, and the conferencing server can no longer mediate. If the permis-
sions of a user get revoked, the conferencing server is responsible for closing
streaming sessions via the WebRTC component’s management interface.

WebRTC Component. Finally, there is a WebRTC component with loose cou-
pling to the conferencing server. The WebRTC component relies on commands by
the conferencing server for management and has the task to establish streaming
sessions. The second task of the WebRTC component is to route media streams.
The conferencing systems covered here use the SFU architecture for all video
streams, so the server redistributes media streams unmodified (see Sect. 2.2).

4.2 Implementation of BigBlueButton

In this section we show how BigBlueButton’s components implement their tasks.

Security Analysis of BigBlueButton and eduMEET 197

Web Client. BigBlueButton uses the frontend framework React1 for its UI.
React does not provide any communication between the server and client.
The server and client of BigBlueButton use the web framework Meteor.js to
facilitate communication, which provides remote procedure call (RPC) and
publish/subscribe capabilities. Internally, if possible, Meteor.js uses a WebSocket
for communication. Using the publish/subscribe capabilities of Meteor.js, the
client mirrors the meeting state of the server and receives state changes trig-
gered by user actions. Therefore, the web client of BigBlueButton only needs to
perform limited state management.

Server-Side Components. The server side of BigBlueButton is split into a
conferencing server and two standalone servers for WebRTC.

Conferencing Server. The conferencing server of BigBlueButton is internally
split into several individual components. It receives user actions on the Web-
Socket connection provided by Meteor.js and routes them within the confer-
encing server. At the destination, a handler performs access control checks and
updates the meeting state. These updates to the meeting state are propagated
internally. The conferencing server keeps a copy of the meeting state in a Mon-
goDB database and uses the publish/subscribe mechanism of Meteor.js to pass
change events to the clients, with access control in the publishing step.

For managing media streams, BigBlueButton interacts with its two media
servers. The web client has the initiative to open media streams for its outgo-
ing and incoming streams. For the audio conference, BigBlueButton does not
mediate signaling between the client and the WebRTC component but instead
relies on the client’s knowledge of a five-digit voice conference number for access
control. For video streams, the server performs a permission check when clients
want to open a stream. When clients get removed from the meeting, the server
component reacts to the event by closing their video streams.

WebRTC Component. BigBlueButton 2.3.3, the version analyzed here, uses two
media servers: FreeSWITCH, and Kurento Media Server (Kurento).2 The voice
conference of meetings is handled by FreeSWITCH, with clients directly con-
necting to FreeSWITCH to perform media negotiation. The video streams are
handled by Kurento, with the conferencing server mediating media negotiation.
BigBlueButton also uses Kurento to relay the voice conference to participants
who only listen. The conferencing server communicates with both media servers
for access control and necessary configuration, for example, media routing.

Extensions to the Shared Architecture. BigBlueButton does not provide
user management but instead relies on external software to integrate BigBlue-

1 https://reactjs.org/.
2 BigBlueButton 2.4 introduces the media server mediasoup, which replaces Kurento

as the default as of 2.5, with a modified media topology.

https://reactjs.org/

198 N. Heitmann et al.

Button’s meeting functionality, for example, Greenlight3 or Moodle.4 The 3rd-
party application performs authentication and access control for joining meet-
ings. For this purpose, BigBlueButton provides a custom HTTP management
API. A shared secret between BigBlueButton and 3rd-party server applications
controls access to the API.

For processing uploaded presentation slides, BigBlueButton uses several
external programs, depending on the file type. The resulting files are made
available to other clients from disk. BigBlueButton allows users to record the
meetings. If a meeting is recorded, it stores audio and video recordings and
the internal messages of the entire meeting as files. BigBlueButton embeds an
instance of the collaborative text editor Etherpad5 to implement its shared notes.

The media negotiation between the client and FreeSWITCH extends our
general model as it is not mediated by the conferencing server. This allows server
operators to connect FreeSWITCH to an external telephony provider via Session
Initiation Protocol (SIP), allowing users to join the conference by telephone.

4.3 Implementation of eduMEET

Web Client. For its web client, eduMEET uses the frontend framework React.
For maintaining the meeting state on the client, eduMEET uses Redux,6 a
JavaScript library for state management in web applications. It uses a store that
holds the application state. The application state gets updated when user actions
or events are dispatched. User-triggered actions can either modify the meeting
room (e. g., locking the room) or change the user settings. The client may pass
these user actions to the server using a WebSocket. To establish and manage a
WebRTC streaming session, the client uses the mediasoup client library.

Server-Side Components. The server side of eduMEET is split into a confer-
encing server, which consists of an Express7 web server with WebSocket support,
and the Node.js library mediasoup for WebRTC.

Conferencing Server. The conferencing server handles all incoming connections
and user authorization. Because of the WebSocket support in the Express web
server, WebSocket handlers and HTTP request handlers share access to a session
object for all requests from the same client. The WebSocket are attached to a
peer object representing a user. The peer object contains relevant information
such as user roles, a unique peer ID, a room ID, and a socket. Any modification
to a peer object is done via the peer ID, which references the peer object in a
dictionary.

3 https://github.com/bigbluebutton/greenlight.
4 https://moodle.org/.
5 https://etherpad.org/.
6 https://redux.js.org/.
7 https://expressjs.com/.

https://github.com/bigbluebutton/greenlight
https://moodle.org/
https://etherpad.org/
https://redux.js.org/
https://expressjs.com/

Security Analysis of BigBlueButton and eduMEET 199

WebRTC Component. For media handling on the server, eduMEET uses the
Node.js library mediasoup, a layer of JavaScript that communicates with a set
of C/C++ subprocesses. The internal architecture of mediasoup has its own
terminology, which contains workers, routers, transports, producers, and con-
sumers [11]. When a new user joins, the client and the conferencing server create
a producer instance. The conferencing server then notifies the other peers and
creates a consumer instance for each. The notified peers create local consumer
instances for themselves.

Extensions to the Shared Architecture. The first additional component in
eduMEET is a torrent tracker for its file sharing feature (see Sect. 5.1). It keeps
track of users participating in upload and download, helping users to connect
to each other. In the web client, eduMEET uses the WebTorrent8 library, which
uses WebRTC for peer-to-peer communication. Furthermore, eduMEET uses
the Passport9 module for external authentication strategies. Depending on the
authentication strategy, new components might arise, for example, an Identity
Provider for OpenID Connect (OIDC) [29].

5 Features and User Roles (RQ2)

In this section, we first compare features the analyzed conferencing systems
offer. We then present user roles shared by both analyzed conferencing systems.
Finally, we go into detail on how each of the analyzed video conferencing systems
handles user roles, permissions, and the mapping to features.

5.1 Comparison of Features

Table 1 shows an overview of the features of both systems. While there is some
overlap, there are also several features specific to BigBlueButton or eduMEET.
Features specific to BigBlueButton are, for example, polls or shared notes. On
the other hand, eduMEET offers file sharing, which is not implemented in Big-
BlueButton.

Some features require additional libraries or application logic. Other fea-
tures require extending the conferencing system with new components, which
are either controlled by the server operator or an external entity. Components
can be additional servers or important libraries that play a vital role in the video
conferencing system (e. g., mediasoup in eduMEET). A component controlled by
the server operator is, for example, a WebRTC media server. A torrent tracking
server for file sharing would be an example of a component that is controlled by
an external entity (see Sect. 4.3). Importantly, additional features and compo-
nents introduce a new level of complexity and a broader attack surface.

8 https://webtorrent.io/.
9 https://www.passportjs.org/.

https://webtorrent.io/
https://www.passportjs.org/

200 N. Heitmann et al.

Table 1. Conferencing features supported by BigBlueButton and eduMEET, with their
required roles. Several features are present both in BigBlueButton and eduMEET, while
others are only supported by one. The table lists which role a user needs to actively
use a feature, where the role “everyone” includes users without access to the meeting.
Note that some features are accessible by multiple user groups.

5.2 User Roles

Common User Roles. BigBlueButton and eduMEET use user roles combined
with permissions for their access control; users who participate in meetings have
different roles, which give them permission to access or use certain features.
Such permissions allow users to share their audio or video, or give users access
to moderation features.

The analyzed conferencing systems have two main user roles in common:
“viewer” and “moderator”. The viewer role, also referred to as “normal” in
eduMEET, gives users basic permissions and allows them, for example, to send
and receive media streams. The moderator role allows for managing the meeting
room, the users, and access to other features. Furthermore, depending on the
features of the respective conferencing system, we can differentiate between users
in a waiting room (or lobby) and users in a meeting. Oftentimes, restrictions like
this are not implemented by creating new user roles, but rather using properties
or flags that are part of the user objects. Thus, two viewers might have different
permissions or access to different features. For example, one user with the viewer
role might be in a waiting room and cannot receive audio and video streams from
other users, while other users with the same role do not have these restrictions
because they are already in the meeting.

Because user roles and the associated permissions are heavily influenced by
features and the current meeting state, access control is a complex topic. The fol-
lowing sections explain the details of each analyzed conferencing system. Table 1

Security Analysis of BigBlueButton and eduMEET 201

gives an overview of the requirements to access individual features. Some fea-
tures have additional requirements besides the user role; for example, regular
users in BigBlueButton may only draw on the whiteboard if the presenter has
given them permission.

BigBlueButton-Specific User Roles. In addition to the viewer and moder-
ator role, every meeting has at most one presenter, who gets permissions related
to a presentation area in the meeting. These additional permissions are limited to
the presenter; other users, including moderators, cannot affect the presentation
area.

Permissions may depend on context. Within breakout rooms, there is no dis-
tinction between moderators and viewers, and all users can interact with the
meeting as viewers. BigBlueButton has a guest waiting room, allowing moder-
ators to limit access to the meeting until they approve new users. Users calling
in via telephone do not have access to the web interface of BigBlueButton and
thus only have access to a very limited set of user actions.

BigBlueButton also allows moderators to “lock” viewers and presenters, to
take away specific permissions. One may use this to aid in the moderation of
large meetings or for specific use cases, like online exams, where participants
should not see each other.

eduMEET-Specific User Roles. In eduMEET, one can use a configuration
file to define new roles and to assign specific permissions. This also permits
changing existing assignments of roles and permissions. The default configuration
contains the roles “normal” (here referred to as “viewer”), “moderator”, and
“admin”. A user can have multiple roles.

A moderator can kick users, disable audio, video, and screen sharing for users
(which the user can activate again), take down raised hands, clear the chat, and
end the meeting. Furthermore, a moderator can use the role manager to give
and remove roles during a meeting. Each role has a “promotable” flag, which
determines whether moderators can give and take the role. In addition, each role
has a configurable level. The level of a moderator must be at least equal to the
role of the target user to modify the target user role. The admin role, which
has the highest level, allows users to enter a full room or a locked room, which
normally sends users to the room’s lobby to wait for approval. As long as no
moderator is in the meeting, viewers can also lock and unlock the room. The
permission is revoked as soon as a user with the moderator role joins.

6 Attacker Model

After performing the primary analysis, as mentioned in Sect. 3, we developed an
attacker model that fits the setting of a video conferencing system.

We assume an attacker may send arbitrary network requests. They do not
have access to any private information regarding the server or the users. The

202 N. Heitmann et al.

attacker cannot read or interfere with the network traffic of other users. The
server operator is assumed to be entirely trustworthy. We do not impose con-
ditions on the surrounding situation because conferencing systems are used to
host various types of events. The attacker may be a viewer, presenter, or even
moderator in a meeting. The attacker may also be a non-participant with no
roles at all or be in the waiting room. The attacker may create their own meet-
ings. During a meeting, users’ roles may change, so we also consider cases where
a moderator revokes an attacker’s permissions.

We consider an attack successful if the attacker breaks any of the aspects
of the CIA triad. The attacker breaks confidentiality guarantees if, for example,
they join a locked meeting and retrieve sensitive streams or public chat content.
The integrity of the meeting state is broken when an attacker oversteps the
permissions of their role, by performing any action that modifies the meeting
state in a way that they are not allowed to. This includes an attacker joining
a meeting without permission. For availability, we consider an attack successful
if the attacker performs DoS against any feature in any meeting, affecting any
user other than the attacker themselves. We exclude DoS by resource exhaustion
and only consider cases of DoS in the application logic, for example, an attacker
blocking seats in a meeting.

We limit the scope of our analysis to the first-party code of BigBlueButton
and eduMEET, respectively. External components and libraries are out of scope
and thus deemed to be safe for the purpose of our evaluation. They are expected
to conform to their documentation with configuration files as distributed with the
conferencing systems. With our analysis, we target the server-side code because
it implements the main application logic. For eduMEET, however, all clients take
an active role in maintaining the meeting state, so we consider both the server
and client side of eduMEET. BigBlueButton relies on the external framework
Meteor.js to maintain the client state, which is out of the scope of this anal-
ysis. Since the server operator is fully trustworthy, we assume that additional
configurations made by the server operator are secure.10

7 Evaluation (RQ3)

We performed the evaluation on BigBlueButton 2.3.3 and eduMEET 3.5.0-
beta.1, the most recent versions at the time of analysis.11 Because our attacker
model is relatively broad, we identified not only high-impact vulnerabilities but
also several smaller vulnerabilities without significant impact on the meeting.
To not overestimate their impact, we explicitly classify such vulnerabilities as
“bugs”. Hereafter, we refer to vulnerabilities and bugs as “findings”.

Our evaluation resulted in 45 findings in BigBlueButton (38 vulnerabilities
and 7 bugs) and 12 findings in eduMEET (12 vulnerabilities). Table 2 gives a
10 This mainly applies to eduMEET, as it allows flexible configuration of the user roles

and permissions.
11 We analyzed commit bb46e2d of https://github.com/edumeet/edumeet (branch

“develop”), which was later merged into eduMEET 3.5.0-beta.1.

https://github.com/edumeet/edumeet

Security Analysis of BigBlueButton and eduMEET 203

Table 2. Summary of all findings in BigBlueButton (BXX) and in eduMEET (EXX).
The final two columns denote which role a legitimate user needs to access the feature,
and the role an attacker needs to perform the attack. The role “everyone” includes
users without access to the meeting.

204 N. Heitmann et al.

short description of each finding, provides the type of violation of the CIA triad
(see Sect. 6), and assigns to each finding the features it affects (see Table 1). A
finding may affect multiple features because some features share parts of their
implementation, for example, the voice and video conference. If a finding is not
related to any specific feature but the core implementation for meeting state and
communication of the respective conferencing system, we use The last two
columns of Table 2 show the user roles needed to perform the actions associated
with the findings. Some of these actions are available as features to specific user
roles, shown in the column legitimate roles, while others are not intended to be
accessible.

As can be seen in Table 2, most of the findings in BigBlueButton are in
the core implementation and in the video conferencing feature. The rest of the
findings are distributed across the other features. In eduMEET, most of the
findings are also in the core implementation and in the text chat feature.

7.1 BigBlueButton

In this section, we present five representative findings out of the 45 findings in
BigBlueButton.

B1: Read Other Meetings’ Public Chat. This finding allows an attacker
to access sensitive data from other meetings hosted on the same server.

To transfer chat messages from the conferencing server to the web client, Big-
BlueButton uses the publish/subscribe mechanism of Meteor.js (see Sect. 4.2).
In particular, the client subscribes to a publisher called group-chat-msg, which
always publishes public chat messages in their meeting and messages in private
chats. The client establishes the subscription with a WebSocket message to the
server. Listing 1.1 shows how the server restricts its responses in the publisher. In
this query, the server inserts the meetingId of the meeting. The first branch only
matches messages where the chatId value is set to "MAIN-PUBLIC-GROUP-CHAT",
which means that the client is subscribed to the public messages in their par-
ticular meeting. The second branch matches all messages with a chat ID in the
chatsIds array, which is a parameter sent by the client. However, missing vali-
dation of chatsIds resulted in the fact that the server can leak public chats of
every meeting hosted on the server.

For the attack description, we assume an attacker who participates in any
meeting hosted on a BigBlueButton server. The attacker has access to the public
chat in their particular meeting. Using a modified client or browser developer
tools, the attacker can modify the parameters their client sends to the server
for the subscription. If the attacker adds "MAIN-PUBLIC-GROUP-CHAT" into the
chatsIds list, intended for private chats (see Listing 1.2), their clients’ sub-
scription applies to the public chat of every meeting hosted by the server; the
publisher on the server provides the messages from the public chats of all meet-
ings. The attacker thus gains access to all messages from the public chat of every
meeting hosted on the particular server.

Security Analysis of BigBlueButton and eduMEET 205

[
{ "meetingId": meetingId,

"chatId": "MAIN-PUBLIC-GROUP-CHAT"
},
{ "chatId":

{ "$in": chatsIds }
}

]

Listing 1.1. The publisher’s server-side
MongoDB query (simplified). When a
chat message matches either one of the
two branches, the server publishes it to
the client.

[
{ "meetingId": meetingId,

"chatId": "MAIN-PUBLIC-GROUP-CHAT"
},
{ "chatId":

{ "$in": ["MAIN-PUBLIC-GROUP-CHAT"] }
}

]

Listing 1.2. By adding the string
"MAIN-PUBLIC-GROUP-CHAT" to the list
intended for private chats, an attacker
subscribes to public chat messages of all
meetings on the server.

B2: Read Arbitrary Private Chats. This finding interacts with B1, increas-
ing the impact of this finding. The publisher group-chat-msg is also vulnerable
to NoSQL injection. The parameter chatsIds can contain arbitrary values sup-
ported by EJSON, an extension of JSON used by Meteor.js. The server does not
check the value’s type. An attacker can modify the parameters their client sends
to the server like in the previous attack. In particular, the attacker can set the
publisher’s parameter chatsIds to [/.*/], causing it to provide all messages
from all public and private chats in all meetings on the server.12

B4: Retain Full Access to Shared Notes After Leaving. This finding
affects shared notes. BigBlueButton relies on the external server component
Etherpad for shared notes. Thus, the conferencing server needs to ensure access
control, including revoking access when a user loses access to the meeting. For
this, the conferencing server includes checks when users make HTTP requests
to Etherpad which reject all users without a BigBlueButton session and check
whether the Etherpad pad belongs to the meeting that the user is in.

However, there is an issue with this process as Etherpad uses a long-running
WebSocket connection for communication between the server and client. When
a user leaves or gets kicked from a meeting, the conferencing server cannot close
the WebSocket to Etherpad; an attacker can continue reading and editing the
shared notes. In addition, the session used for the server-side check stays valid
after leaving the meeting, so the server also allows new WebSocket connections
to Etherpad.

B26: View Unshown Presentation Slides in Current Meeting. BigBlue-
Button relies on a client’s knowledge of a presentation ID for the client to down-
load presentation slides for each uploaded presentation. However, the server leaks
the presentation IDs.

12 This is an array, containing a native JavaScript regular expression object for .*. In
EJSON, it is serialized as [{ "$regexp": ".*", "$flags": "" }].

206 N. Heitmann et al.

The server sends the presentation IDs to clients so they can can display
the slides, but inadvertently reveals them for all presentations in the meeting
due to incomplete filtering. This allows an attacker in the meeting to view all
slides that have been uploaded, including future slides in the currently chosen
presentation and the slides of presentations that were uploaded but never shown
to the viewers.

B34: Receive Audio and Screen Share After Leaving. The final finding
described here affects the voice and video conference and the screen share feature
of BigBlueButton. It allows the attacker to listen to audio and watch screen
shares secretly, even after they leave the meeting.

We assume the attacker is a viewer in a meeting and leaves or gets kicked.
While still in the meeting, the attacker can open multiple viewing sessions for
each media stream with a modified client that sends additional requests. For
the screen share and listen-only audio, the conferencing server only closes one of
the sessions when the attacker leaves the meeting. The remaining sessions stay
valid in the WebRTC component and only get closed when the screen share or
meeting ends, respectively.

7.2 eduMEET

We explain three representative findings in eduMEET. In Sect.A.1, we cover an
additional interesting yet more complex finding in depth (E3).

E1: Forge Malicious Chat Objects. This finding points to one of the root
causes of several findings in eduMEET and allows a multitude of attacks. A
client can send a chat message to the server as a chat message object in its
WebSocket connection to the server. The server forwards this object to all other
participants in the same room as long as the sender has the SEND CHAT permis-
sion. An attacker can manipulate fields in messages they send to perform several
attacks. In the following, we describe three possible attacks. First, the attacker
can manipulate the name field, which is used to display the name of the sender.
The attacker can abuse it to impersonate other users by changing the content.
Second, the attacker can also manipulate the time field, allowing them to manip-
ulate the chat conversation and send messages in the past or future. Third, the
attacker can also set the name field to null or other invalid objects. This leads
to a DoS attack against the receiving clients because the client does not expect
other data types, and the errors are not handled, which leads to a crash in the
application. Interestingly, when users affected by such a DoS attack try to rejoin
the meeting, they are usually redirected to the index page instead of joining the
meeting. This happens because joining users receive the chat and file history,
which automatically repeats the attack. The attacker can stay in the room to
prevent the room from resetting, effectively blocking the room indefinitely.

Security Analysis of BigBlueButton and eduMEET 207

E2: Rejoin After Kick, Bypassing Locked Room. This finding allows
an attacker to bypass the room lock, which can be used as a security mech-
anism to prevent other users from joining the room without approval. In this
attack scenario, a moderator kicks the attacker from the room. Afterward, the
moderator locks the room, which prevents users from joining the room without
approval. The attacker is now not able to rejoin the meeting without further
actions because the client generates a new peer ID and the server prevents new
users from joining a locked room. However, the attacker can set their client’s peer
ID to any value, for example, by overwriting the client-generated value with the
browser developer tools. If the attacker sets their peer ID to their old peer ID
when they were in the meeting, the server treats the attacker as a returning user,
which allows bypassing a locked or even a full room. Therefore, the attacker can
rejoin the locked room after getting kicked by changing the peer ID to the old
peer ID.

E10: Prevent Getting Muted. This finding allows an attacker in a meeting to
disrupt it without others being able to mute them. Moderators can mute partic-
ipants for everyone (global mute). The affected user can still unmute themselves,
so this is not a security mechanism. Participants can also decide to mute another
participant for themselves (local mute). However, an attacker can circumvent
getting muted by sending a request to create a second microphone producer and
muting their first microphone producer. Other participants cannot globally or
locally mute the attacker’s second microphone producer.

7.3 Responsible Disclosure

We reproduced all findings on unmodified instances of BigBlueButton 2.3.3 and
eduMEET 3.5.0-beta.1. We worked in local environments to not affect real video
conferencing deployments with their users. We reported the findings to the devel-
opers of BigBlueButton and eduMEET between July 2021 and May 2022. The
developers of eduMEET thanked us for the findings but have not released fixed
versions as of December 2023. The developers of BigBlueButton acknowledged
the findings and started publishing fixes with BigBlueButton 2.3.9. As of Decem-
ber 2023, the developers have fully addressed 37 of the 45 findings and assigned
CVEs to 14 of them (see Table 3). The remaining issues are still to be fixed.

8 Discussion

We discuss our findings from Sect. 7 by considering the potential root causes in
the respective conferencing system. For this, we identify commonalities between
the findings. Finally, we discuss the limitations of our evaluation.

8.1 BigBlueButton

BigBlueButton offers a lot of features, making it the more complex of the two
conferencing systems. Because of this breadth of features, the attack surface is

208 N. Heitmann et al.

naturally larger when compared to eduMEET. In addition, the interplay between
features makes correct implementation more difficult. We observed that our find-
ings in BigBlueButton have two major types of root causes, both of which relate
to the complexity of the software.

Several vulnerabilities came up as a result of subtle logic bugs in the internal
server logic. We can see this in the situation arising when an attacker opens
multiple media streams B35, but also in several other findings: B1, B3, B10, and
B18, among others. These can, to some extent, be traced back to the internal
logical complexity of BigBlueButton, which results from a large set of features
and evolution over time.

For several other vulnerabilities, one can see a commonality of incomplete or
missing security considerations in the design. For example, in B33, the ability
of an attacker to join voice conferences without legitimate access can be traced
back to reliance on a 5-digit voice conference ID for access control. When users
leave, the server cannot revoke this ID to revoke access, as it is identical for all
participants. In this case, there is a mitigation in place, but it is not sufficient
to prevent attacks. There are also some more subtle cases, for example, in B27,
where guessable secrets allow an attacker to gain read access to uploaded slides.

8.2 eduMEET

The root causes in most of our findings for eduMEET. are of a different nature.
Oftentimes, the server trusts the client and forwards its messages without prop-
erly checking the input, for example, in E1, E4, and E6.

While the technical details of the other findings differ, they may stem from a
similar root cause. For example, E2, which results from an implementation error,
can also be seen as a missing feature because the moderator cannot effectively
ban the attacker from the meeting. The same applies to E10 where the moderator
cannot force an attacker to stop sharing audio. Here, it would be helpful to
have a more fine-grained permission system, like the “lock settings” feature in
BigBlueButton. This feature could allow the moderator to withdraw permissions
of viewers, for example, to share audio.

In summary, most findings in eduMEET are either because there is too much
trust in the client or because of missing moderation features. Both factors result
in a lack of security and measures to eliminate disruptive factors within a meet-
ing. Consequently, these findings show that filtering client messages and moder-
ation features are critical measures to ensure secure meetings.

8.3 Limitations

Scope. To understand the architecture and behavior of conferencing systems,
we analyzed the functionality and interaction of both conferencing systems. We
examined server-side and client-side components in eduMEET. In BigBlueBut-
ton, we concentrated on the server-side components since these implement most

Security Analysis of BigBlueButton and eduMEET 209

of the logic and functionality. BigBlueButton’s client delegates state manage-
ment to the third-party framework Meteor.js, which is out of scope for our anal-
ysis. For this reason, we did not examine the BigBlueButton client, which could
bring new findings regarding web security.

Automation. For comparison with our manual approach, we used SonarCloud13

to scan for bugs automatically. While it found code snippets that could be
improved, it did not find any vulnerabilities. This result is expected because
most of the bugs can be classified as logical flaws and require user interactions
and a certain meeting state. Such conditions cannot be automatically applied
by a static code analysis tool. BigBlueButton has publicly used SonarCloud as
part of their quality control since June 2021.14

Architecture of Conferencing Systems. Comparing two architectures as differ-
ent as those of eduMEET and BigBlueButton was not a trivial task. Thus, we
agreed on a shared architecture by breaking down the architecture of the respec-
tive conference systems. Certainly, the shared architecture can be used for future
work. However, depending on the conferencing system and architecture, it may
be necessary to extend the model. Our model uses the SFU WebRTC architec-
ture, while other systems may use P2P or other WebRTC architectures, which
allow for direct communication between the clients. Furthermore, other confer-
encing systems may communicate differently, for example, by using Extensible
Messaging and Presence Protocol (XMPP).

Analysis of Further Conferencing Systems. We limited the scope of our analysis
to allow us to cover the chosen conferencing systems and their architectures in
detail. Further analyses of open-source conferencing systems may be performed
using a similar process, applied to their respective architectures. Our analysis
process is not directly applicable to closed-source software. Nevertheless, the
detected logical flaws can provide inspiration for new vulnerabilities in other
closed-source conferencing systems supporting the affected features.

9 Related Work

Although various vulnerabilities have been found in web conferencing systems
in the past, there is little exhaustive scientific research in the general area of
video conferencing systems. Thus, we consider previous research, vulnerability
reports, and talks regarding conferencing systems to get a grasp of the attack
surface.

Most of the vulnerabilities found in web conferencing systems are related
to classic web security vulnerabilities such as cross-site scripting (XSS) [43,
44], server-side request forgery (SSRF) [9], SQL injection via custom URI
13 https://www.sonarsource.com/products/sonarcloud.
14 https://github.com/bigbluebutton/bigbluebutton/pull/10737#issuecomment-

860211455.

https://www.sonarsource.com/products/sonarcloud
https://github.com/bigbluebutton/bigbluebutton/pull/10737#issuecomment-860211455
https://github.com/bigbluebutton/bigbluebutton/pull/10737#issuecomment-860211455

210 N. Heitmann et al.

scheme [18], and different types of misconfigurations [40,41]. Also common
are vulnerabilities resulting from missing checks [40,41], flawed role manage-
ment [4,40,47], missing security considerations [2,47], and image or document
conversions leading to vulnerabilities [2,10]. While all these vulnerabilities are
interesting, we wanted to focus more on factors that extend our attack surface.

Among the previously mentioned reports, some stand out in particular
because the described vulnerabilities are located in the client, but the client
differs from our architecture. In our architecture, the client is a web browser.
In some reports [3,20,28,43], the client is an Electron15 app. These applications
are made with web technologies and use Chromium and Node.js. Vulnerabili-
ties in these applications are critical since they can lead to client-side remote
code execution (RCE) [3,20,28,43]. Other kinds of conferencing clients are clas-
sic executables on Windows, Mac, or Linux, which extend the attack surface as
well, for example, due to memory-related issues [31,37]. Thus, different types
of clients introduce different types of attacks, and the more types of clients the
conferencing system offers, the larger the attack surface. The same applies to
other components, such as Zoom’s Multimedia Router (MMR), which is respon-
sible for transmitting audio and video between Zoom clients; this component
was affected by a buffer overflow found by Google Project Zero [37].

Another interesting component used in conferencing systems is the login
mechanism. Sudhodanan and Paverd found an attack related to Single Sign-
On (SSO), where an attacker creates a Zoom account with the victim’s email
(before the victim creates an account) [39]. When the victim now uses an iden-
tity provider with the same email to create a Zoom account, Zoom merges the
accounts, which allows the attacker to log in to the victim’s account with the
attacker’s password.

Natalie Silvanovich from Google Project Zero released articles in 2018, where
she analyzed and fuzzed the WebRTC implementation in Chrome and closed-
source video conferencing applications such as FaceTime and WhatsApp [32–36].
Four years later, she found one memory-related vulnerability in Zoom’s client
and another one in Zoom’s MMR [37]. In the end, she pointed out that the closed-
source software comes with a lot of challenges for researchers, which prevents
further progress in verifying security properties [37]. She recommended making
closed-source software available to security researchers [37]. In the same year,
Ivan Fratric from Google Project Zero presented at Black Hat USA a 0-click
RCE vulnerability in Zoom [14]. Fratric found out that different components use
different XML parsers, which allowed him to smuggle XMPP messages (stanza
smuggling) [14].

In the last years, cryptographic vulnerabilities in Matrix clients and libraries
became public [13,24]. In 2021, Kasak et al. drew attention to two vulnerabilities
where vulnerable clients may be tricked into disclosing encryption keys [13]. In
2022, Albrecht et al. presented six attacks that affected the Matrix standard and
its flagship client Element [24]. These attacks break authentication and confi-
dentiality but require the cooperation of the homeserver, which is responsible

15 https://www.electronjs.org/.

https://www.electronjs.org/

Security Analysis of BigBlueButton and eduMEET 211

for storing communication history and account information and relaying mes-
sages [23,24].

While we mentioned vulnerabilities in conferencing systems from a technical
point of view, Ling et al. focused on the attacker as a person who is responsible
for disruptions in a meeting, i. e., Zoombombing [21]. Their results indicate that
such attackers often have help from an insider within the meeting. Therefore,
password protections and meeting IDs are a rather ineffective mechanism to
prevent Zoombombing; they argue that unique join links would be an effective
security mechanism.

In summary, there are lots of reports and findings in different fields regarding
video conferencing systems and their components. However, there is a gap in sci-
entific approaches, especially regarding open-source video conferencing systems.
Our work is a first step to approach this problem.

10 Conclusions and Future Work

In our work, we systematically analyzed two open-source conferencing systems
and detected 57 vulnerabilities and bugs. While the root cause for vulnerabilities
in BigBlueButton mostly lies in the complexity of the system and the interplay
between the features, in eduMEET, they mainly resulted from missing strict
authorization checks and excessive trust in client messages. We want to highlight
that our findings do not imply that BigBlueButton and eduMEET are less secure
than commercial closed-source alternatives. The high number of findings was
largely enabled by the open-source implementations, which facilitated our in-
depth evaluations. On the negative side, it needs to be mentioned that both
systems lack a swift vulnerability patching process. In the case of eduMEET,
none of the reported vulnerabilities have been fixed. This is not acceptable for
systems processing security-critical data.

The high number of findings shows that there is indeed a research gap in the
security of video conferencing systems. With our systematic security analyses, we
want to draw attention to this topic and want to stress that video conferencing
systems offer a large attack surface due to their large number of components and
used technologies. This is also confirmed by many related vulnerabilities, mostly
found in non-systematic analyses by bug bounty hunters in recent years.

Our work can be extended in different directions. XML parsers within XMPP
implementations are underexplored and are an interesting attack vector since
XMPP is often used in video conferencing systems [14]. Other than that, the
systematic approach that we applied to BigBlueButton and eduMEET could
be applied to other open-source conferencing systems. Closed-source software
is often more difficult to analyze if it is not freely and openly available [37].
Commercial providers should consider facilitating further security research and
we hope there will be more future work that helps to improve the security of
video conferencing systems.

212 N. Heitmann et al.

Acknowledgements. We thank our anonymous reviewers for their insightful com-
ments and detailed suggestions. We are also grateful to Sven Hebrok for helpful dis-
cussions and contributions in the early stage of this research.

This research was funded by the PRISMA Elite Program of the Department of
Computer Science of Paderborn University, and by the research project “North Rhine-
Westphalian Experts in Research on Digitalization (NERD II)”, sponsored by the state
of North Rhine-Westphalia – NERD II 005-2201-0014.

A Appendix

A.1 eduMEET

E3: Overwrite Peer Reference. This finding leads to multiple high-impact
issues in eduMEET. When a user connects to a room, the server creates a JSON
Web Token (JWT) [17], bound to a peer ID generated by the client. The JWT
is stored on the server and referenced by a cookie-based session. When a user
connects to a room, eduMEET performs two checks. First, the server checks if
there is a JWT for the session and if the peer ID is already used by a connected
user. The server rejects the connecting peer if the peer ID is already used, but
no JWT exists. Otherwise, the server verifies the JWT, i. e., the server checks
if the peer ID matches the JWT. In case of a valid JWT, the server treats the
user as returning and closes the old connection.

The vulnerability stems from the fact that the server creates a new peer
object regardless of whether the JWT matches the peer ID. The peer object (see
Sect. 4.3) represents a meeting participant and contains, among other things, a
unique peer ID, a room ID, a list of user roles, and a socket for communication.
Despite the importance of the JWT validity, in the first step, the server only
checks if a peer ID and a JWT exist. Therefore, the peer ID does not have to
match the JWT. When an attacker connects to a room with an existing peer
ID and a valid session referencing a JWT that does not match the peer ID, the
server still creates a new peer object. The server keeps a list of peer objects
referenced by their peer IDs. Since the peer ID exists, the server overwrites the
existing peer reference. However, the old connection stays open, and the old peer
can still participate in the meeting.

To perform an attack, the attacker first joins any meeting. The attacker has
a valid peer ID generated by the client and a valid session from the server. The
attacker now joins the targeted meeting. Instead of having their client generate
a new random peer ID for this connection, the attacker chooses an existing peer
ID (see below). To achieve this, they may use the browser developer tools to
overwrite the JavaScript variable holding the peer ID their client generated and
then join the meeting. The new peer ID does not match the attacker’s JWT
anymore. The WebSocket connection of the old peer with the same peer ID
is not closed but not referenced anymore. That means the old peer cannot be
targeted by moderator actions (E3.2). If the new peer with the same peer ID
now leaves the meeting, the UI of all participants changes, and peers with the
target peer ID are not visible anymore, but the connection of the old peer is still

Security Analysis of BigBlueButton and eduMEET 213

open. The old peer is invisible in the meeting but can still participate (E3.1),
for example, listen to existing streams and read the chat. To exploit the first
two scenarios (E3.1 and E3.2), the attacker needs to be the old and new peer
at the same time, which they can achieve using two browser instances. In the
last scenario (E3.3), the attacker uses the victim’s peer ID to prevent the victim
from receiving new media streams. The peer IDs of all participants are known
because the server broadcasts them when joining.

A.2 Status of Fixes in BigBlueButton

Table 3. All findings in BigBlueButton (BXX) with their status as of December 2023.
The latest version at this time was BigBlueButton 2.7.3. In total, 37 of the 45 findings
were fully fixed and the impact of one additional finding was significantly reduced.

214 N. Heitmann et al.

References

1. 8x8, Inc., Vulnerability Disclosure Program Policy (2023). https://hackerone.com/
8x8

2. Ahmed, M.: Hacking Zoom: Uncovering Tales of Security Vulnerabilities in Zoom
(2020). https://mazinahmed.net/blog/hacking-zoom/

3. Altpeter, B.: RCE in Jitsi Meet Electron prior to 2.3.0 due to insecure use
of shell.openExternal() (CVE-2020-25019) (2020). https://benjamin-altpeter.de/
jitsi-meet-electron-rce-shell-openexternal/

4. Anthony, T.: Zoom Security Exploit - Cracking private meeting pass-
words (2020). https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-
private-meeting-passwords/

5. Thévenet, A.: France digital strategy for education supports the use of digital
commons (2023). https://joinup.ec.europa.eu/collection/open-source-observatory-
osor/news/france-digital-strategy-education-2

6. Begen, A.C., Kyzivat, P., Perkins, C., Handley, M.J.: SDP: Session Description
Protocol. RFC 8866 (Proposed Standard) (2021). https://www.rfc-editor.org/rfc/
rfc8866.txt

7. BigBlueButton. French Ministry of Education chooses BigBlueButton (2023).
https://bigbluebutton.org/2023/01/11/french-ministry-of-education-chooses-
bigbluebutton/

8. Boström, H., Jennings, C., Castelli, F., Bruaroey, J-I.: WebRTC: Real-time com-
munication in browsers. W3C recommendation, W3C (2023). https://www.w3.
org/TR/2023/REC-webrtc-20230306/

9. Bräunlein, F.: MS Teams: 1 feature, 4 vulnerabilities (2021). https://positive.
security/blog/ms-teams-1-feature-4-vulns

10. Böck, H.: File Exfiltration via Libreoffice in BigBlueButton and JODConverter
(2020). https://blog.hboeck.de/archives/902-File-Exfiltration-via-Libreoffice-in-
BigBlueButton-and-JODConverter.html

11. Castillo, I.B.: mediasoup v3 Design (2020). https://mediasoup.org/
documentation/v3/mediasoup/design/

12. Davis, R.: Zoom’s Bug Bounty Program: 2021 in Review (2022). https://blog.
zoom.us/zoom-bug-bounty-program-2021/

13. Kasak, D., Callahan, D., Hodgson, M.: Practically-exploitable Cryptographic Vul-
nerabilities in Matrix (2022). https://matrix.org/blog/2021/09/13/vulnerability-
disclosure-key-sharing

14. Fratric, I.: XMPP Stanza Smuggling or How I Hacked Zoom (2022). https://i.
blackhat.com/USA-22/Thursday/US-22-Fratric-XMPP-Stanza-Smuggling.pdf

15. GÉANT. Build Your Own eduMEET Service (2020). https://web.archive.org/
web/20200416162612/https://edumeet.org/build/

16. heise online. Rheinland-Pfalz: Schulen dürfen Microsoft-Software Teams nicht mehr
nutzen [Rhineland-Palatinate: Schools no longer allowed to use Microsoft Teams]
(2022). https://www.heise.de/news/Rheinland-Pfalz-Schulen-duerfen-Microsoft-
Software-Teams-nicht-mehr-nutzen-7154309.html

17. Jones, M.B., Bradley, J., Sakimura, N.: JSON Web Token (JWT). RFC 7519 (Pro-
posed Standard) (2015). https://www.rfc-editor.org/rfc/rfc7519.txt. Updated by
RFCs 7797, 8725

18. Keegan, R.: Patched Zoom Exploit: Altering Camera Settings via Remote
SQL Injection (2020). https://medium.com/@keegan.ryan/patched-zoom-exploit-
altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d

https://hackerone.com/8x8
https://hackerone.com/8x8
https://mazinahmed.net/blog/hacking-zoom/
https://benjamin-altpeter.de/jitsi-meet-electron-rce-shell-openexternal/
https://benjamin-altpeter.de/jitsi-meet-electron-rce-shell-openexternal/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://www.tomanthony.co.uk/blog/zoom-security-exploit-crack-private-meeting-passwords/
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/france-digital-strategy-education-2
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/france-digital-strategy-education-2
https://www.rfc-editor.org/rfc/rfc8866.txt
https://www.rfc-editor.org/rfc/rfc8866.txt
https://bigbluebutton.org/2023/01/11/french-ministry-of-education-chooses-bigbluebutton/
https://bigbluebutton.org/2023/01/11/french-ministry-of-education-chooses-bigbluebutton/
https://www.w3.org/TR/2023/REC-webrtc-20230306/
https://www.w3.org/TR/2023/REC-webrtc-20230306/
https://positive.security/blog/ms-teams-1-feature-4-vulns
https://positive.security/blog/ms-teams-1-feature-4-vulns
https://blog.hboeck.de/archives/902-File-Exfiltration-via-Libreoffice-in-BigBlueButton-and-JODConverter.html
https://blog.hboeck.de/archives/902-File-Exfiltration-via-Libreoffice-in-BigBlueButton-and-JODConverter.html
https://mediasoup.org/documentation/v3/mediasoup/design/
https://mediasoup.org/documentation/v3/mediasoup/design/
https://blog.zoom.us/zoom-bug-bounty-program-2021/
https://blog.zoom.us/zoom-bug-bounty-program-2021/
https://matrix.org/blog/2021/09/13/vulnerability-disclosure-key-sharing
https://matrix.org/blog/2021/09/13/vulnerability-disclosure-key-sharing
https://i.blackhat.com/USA-22/Thursday/US-22-Fratric-XMPP-Stanza-Smuggling.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-Fratric-XMPP-Stanza-Smuggling.pdf
https://web.archive.org/web/20200416162612/https://edumeet.org/build/
https://web.archive.org/web/20200416162612/https://edumeet.org/build/
https://www.heise.de/news/Rheinland-Pfalz-Schulen-duerfen-Microsoft-Software-Teams-nicht-mehr-nutzen-7154309.html
https://www.heise.de/news/Rheinland-Pfalz-Schulen-duerfen-Microsoft-Software-Teams-nicht-mehr-nutzen-7154309.html
https://www.rfc-editor.org/rfc/rfc7519.txt
https://medium.com/@keegan.ryan/patched-zoom-exploit-altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d
https://medium.com/@keegan.ryan/patched-zoom-exploit-altering-camera-settings-via-remote-sql-injection-4fdf3de8a0d

Security Analysis of BigBlueButton and eduMEET 215

19. Kelly, S.M.: Zoom’s massive ’overnight success’ actually took nine years.
CNN (2020). https://edition.cnn.com/2020/03/27/tech/zoom-app-coronavirus/
index.html

20. Kinugawa, M.: Discord Desktop app RCE (2020). https://mksben.l0.cm/2020/10/
discord-desktop-rce.html

21. Ling, C., Balci, U., Blackburn, J., Stringhini, G.: A first look at Zoombombing.
In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1452–1467 (2021).
https://ieeexplore.ieee.org/document/9638984

22. Marczak, B., Scott-Railton, J.: Move fast and roll your own crypto - a quick look at
the confidentiality of zoom meetings (2020). https://citizenlab.ca/2020/04/move-
fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/

23. Martin, T., Radzio, M., Sharma, K.: Matrix concepts (2023). https://matrix.org/
docs/matrix-concepts

24. Albrecht, M.R., Celi, S., Dowling, B., Jones, D.: Practically-exploitable Crypto-
graphic Vulnerabilities in Matrix (2022). https://nebuchadnezzar-megolm.github.
io/static/paper.pdf

25. McGrew, D., Rescorla, E.: Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for the Secure Real-time Transport Protocol (SRTP). RFC 5764
(Proposed Standard) (2010). https://www.rfc-editor.org/rfc/rfc5764.txt. Updated
by RFCs 7983, 9443

26. Meyer, K.: GÉANT eduMEET service launched early to support communication
needs during the COVID-19 lockdown (2020). https://connect.geant.org/2020/
06/16/geant-edumeet-service-launched-early-to-support-communication-needs-
during-the-covid-19-lockdown

27. Nettleton, R.: BigBlueButton (2010). https://web.archive.org/web/
20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/
bigbluebutton/

28. s1r1us and TheGrandPew. Remote Code Execution on Element Desktop Appli-
cation using Node Integration in Sub Frames Bypass - CVE-2022-23597 (2022).
https://blog.electrovolt.io/posts/element-rce/

29. Sakimura, N., Bradley, J., Jones, M.B., de Medeiros, B., Mortimore, C.: OpenID
Connect Core 1.0. OpenID Foundation (2014). https://openid.net/specs/openid-
connect-core-1 0-final.html

30. Schreiber, P., Hoffman-Andrews, J., Grauer, Y.: Videoconferencing Guide (2020).
https://videoconferencing.guide/

31. Sector7. Zoom RCE from Pwn2Own 2021 (2021). https://sector7.computest.nl/
post/2021-08-zoom/

32. Silvanovich, N.: Adventures in Video Conferencing Part 1: The Wild World of
WebRTC (2018). https://googleprojectzero.blogspot.com/2018/12/adventures-in-
video-conferencing-part-1.html

33. Silvanovich, N.: Adventures in Video Conferencing Part 2: Fun with
FaceTime (2018). https://googleprojectzero.blogspot.com/2018/12/adventures-
in-video-conferencing-part-2.html

34. Silvanovich, N.: Adventures in Video Conferencing Part 3: The Even Wilder
World of WhatsApp (2018). https://googleprojectzero.blogspot.com/2018/12/
adventures-in-video-conferencing-part-3.html

35. Silvanovich, N.: Adventures in Video Conferencing Part 4: What Didn’t Work
Out with WhatsApp (2018). https://googleprojectzero.blogspot.com/2018/12/
adventures-in-video-conferencing-part-4.html

https://edition.cnn.com/2020/03/27/tech/zoom-app-coronavirus/index.html
https://edition.cnn.com/2020/03/27/tech/zoom-app-coronavirus/index.html
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://ieeexplore.ieee.org/document/9638984
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://matrix.org/docs/matrix-concepts
https://matrix.org/docs/matrix-concepts
https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://www.rfc-editor.org/rfc/rfc5764.txt
https://connect.geant.org/2020/06/16/geant-edumeet-service-launched-early-to-support-communication-needs-during-the-covid-19-lockdown
https://connect.geant.org/2020/06/16/geant-edumeet-service-launched-early-to-support-communication-needs-during-the-covid-19-lockdown
https://connect.geant.org/2020/06/16/geant-edumeet-service-launched-early-to-support-communication-needs-during-the-covid-19-lockdown
https://web.archive.org/web/20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/bigbluebutton/
https://web.archive.org/web/20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/bigbluebutton/
https://web.archive.org/web/20100814003302/https://edc.carleton.ca/blog/index.php/2010/06/04/bigbluebutton/
https://blog.electrovolt.io/posts/element-rce/
https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html
https://videoconferencing.guide/
https://sector7.computest.nl/post/2021-08-zoom/
https://sector7.computest.nl/post/2021-08-zoom/
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-1.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-2.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-3.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-4.html

216 N. Heitmann et al.

36. Silvanovich, N.: Adventures in Video Conferencing Part 5: Where Do We Go
from Here? (2018). https://googleprojectzero.blogspot.com/2018/12/adventures-
in-video-conferencing-part-5.html

37. Silvanovich, N.: Zooming in on Zero-click Exploits (2022). https://
googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.
html

38. Reuters Staff. Google bans Zoom software from employee laptops. REUTERS
(2020). https://www.reuters.com/article/us-google-zoom-idUSKCN21Q32V

39. Sudhodanan, A., Paverd, A.: Pre-hijacked accounts: an empirical study of secu-
rity failures in user account creation on the web. In: Proceedings of the
31st USENIX Security Symposium (USENIX Security 2022), pp. 1795–1812,
Boston, MA (2022). USENIX Association. https://www.usenix.org/conference/
usenixsecurity22/presentation/sudhodanan

40. Thodupunoori, R.: Part-1 Dive into Zoom Applications (2021). https://rakesh-
thodupunoori.medium.com/part-1-dive-into-zoom-applications-d70f3de53ec5

41. Thodupunoori, R.: Part 2: Dive into Zoom Applications (2021). https://rakesh-
thodupunoori.medium.com/part-2-dive-into-zoom-applications-1b01091345c1

42. Tudor, C.: The Impact of the COVID-19 pandemic on the global web and video
conferencing SaaS market. Electronics 11, 2633 (2022)

43. Vegeris, O.: “Important, Spoofing” - zero-click, wormable, cross-platform remote
code execution in Microsoft Teams (2020). https://github.com/oskarsve/ms-
teams-rce

44. Vela, E.: Zoom: XSS in Zoom.us Signup Flow (2020). https://github.com/google/
security-research/security/advisories/GHSA-fpgp-vrmv-v8f2/

45. Vengattil, M., Roulette, J.: Elon Musk’s SpaceX bans Zoom over privacy
concerns -memo. REUTERS (2020). https://www.reuters.com/article/us-spacex-
zoom-video-commn-idUSKBN21J71H

46. Website of the conference of ministers of education (Kultusministerkonferenz). Dig-
itale Lernangebote [Digital Learning Tools] (2023). https://www.kmk.org/themen/
bildung-in-der-digitalen-welt/distanzlernen.html

47. Wittmann, L.: Visavid - Datensicherheit im Warteraum [Visavid - Data Security in
the Waiting Room]. Medium (2021). https://lilithwittmann.medium.com/visavid-
datensicherheit-im-warteraum-77c184c1d58a

48. Zoom Video Communications, Inc., Vulnerability Disclosure Policy (2021). https://
www.zoomgov.com/docs/en-us/vulnerability-disclosure-policy.html

https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html
https://googleprojectzero.blogspot.com/2018/12/adventures-in-video-conferencing-part-5.html
https://googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.html
https://googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.html
https://googleprojectzero.blogspot.com//2022/01/zooming-in-on-zero-click-exploits.html
https://www.reuters.com/article/us-google-zoom-idUSKCN21Q32V
https://www.usenix.org/conference/usenixsecurity22/presentation/sudhodanan
https://www.usenix.org/conference/usenixsecurity22/presentation/sudhodanan
https://rakesh-thodupunoori.medium.com/part-1-dive-into-zoom-applications-d70f3de53ec5
https://rakesh-thodupunoori.medium.com/part-1-dive-into-zoom-applications-d70f3de53ec5
https://rakesh-thodupunoori.medium.com/part-2-dive-into-zoom-applications-1b01091345c1
https://rakesh-thodupunoori.medium.com/part-2-dive-into-zoom-applications-1b01091345c1
https://github.com/oskarsve/ms-teams-rce
https://github.com/oskarsve/ms-teams-rce
https://github.com/google/security-research/security/advisories/GHSA-fpgp-vrmv-v8f2/
https://github.com/google/security-research/security/advisories/GHSA-fpgp-vrmv-v8f2/
https://www.reuters.com/article/us-spacex-zoom-video-commn-idUSKBN21J71H
https://www.reuters.com/article/us-spacex-zoom-video-commn-idUSKBN21J71H
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/distanzlernen.html
https://www.kmk.org/themen/bildung-in-der-digitalen-welt/distanzlernen.html
https://lilithwittmann.medium.com/visavid-datensicherheit-im-warteraum-77c184c1d58a
https://lilithwittmann.medium.com/visavid-datensicherheit-im-warteraum-77c184c1d58a
https://www.zoomgov.com/docs/en-us/vulnerability-disclosure-policy.html
https://www.zoomgov.com/docs/en-us/vulnerability-disclosure-policy.html

	Security Analysis of BigBlueButton and eduMEET
	1 Introduction
	2 Background
	2.1 WebRTC
	2.2 WebRTC Architectures in Conferencing Systems

	3 Analysis Method
	3.1 High-Level Analysis
	3.2 Source Code Supported Security Analysis

	4 Architectures of the Analyzed Open-Source Conferencing Systems (RQ1)
	4.1 Shared Architecture
	4.2 Implementation of BigBlueButton
	4.3 Implementation of eduMEET

	5 Features and User Roles (RQ2)
	5.1 Comparison of Features
	5.2 User Roles

	6 Attacker Model
	7 Evaluation (RQ3)
	7.1 BigBlueButton
	7.2 eduMEET
	7.3 Responsible Disclosure

	8 Discussion
	8.1 BigBlueButton
	8.2 eduMEET
	8.3 Limitations

	9 Related Work
	10 Conclusions and Future Work
	A Appendix
	A.1 eduMEET
	A.2 Status of Fixes in BigBlueButton

	References

