
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Content-Type: multipart/oracle - Tapping into
Format Oracles in Email End-to-End Encryption

Fabian Ising, Münster University of Applied Sciences and National Research Center
for Applied Cybersecurity ATHENE; Damian Poddebniak and Tobias Kappert,

Münster University of Applied Sciences; Christoph Saatjohann and
Sebastian Schinzel, Münster University of Applied Sciences and

National Research Center for Applied Cybersecurity ATHENE
https://www.usenix.org/conference/usenixsecurity23/presentation/ising

Content-Type: multipart/oracle
Tapping into Format Oracles in Email End-to-End Encryption

Fabian Ising*,†, Damian Poddebniak*, Tobias Kappert*,
Christoph Saatjohann*,†, and Sebastian Schinzel*,†

*Münster University of Applied Sciences
†ATHENE – National Research Center for Applied Cybersecurity

Abstract
S/MIME and OpenPGP use cryptographic constructions re-
peatedly shown to be vulnerable to format oracle attacks in
protocols like TLS, SSH, or IKE. However, format oracle at-
tacks in the End-to-End Encryption (E2EE) email setting are
considered impractical as victims would need to open many
attacker-modified emails and communicate the decryption
result to the attacker. But is this really the case?

In this paper, we survey how an attacker may remotely
learn the decryption state in email E2EE. We analyze the
interplay of MIME and IMAP and describe side-channels
emerging from network patterns that leak the decryption sta-
tus in Mail User Agents (MUAs). Concretely, we introduce
specific MIME trees that produce decryption-dependent net-
work patterns when opened in a victim’s email client.

We survey 19 OpenPGP- and S/MIME-enabled email
clients and four cryptographic libraries and uncover a side-
channel leaking the decryption status of S/MIME messages
in one client. Further, we discuss why the exploitation in the
other clients is impractical and show that it is due to missing
feature support and implementation quirks. These unintended
defenses create an unfortunate conflict between usability and
security. We present more rigid countermeasures for MUA
developers and the standards to prevent exploitation.

1 Introduction

In the last decades, researchers repeatedly presented format
oracle attacks such as Bleichenbacher’s “Million Message
Attack” [6] and Vaudenay’s CBC padding oracle attack [44]
to break the confidentiality and authenticity of widely used
protocols such as TLS [2, 7, 30], SSH [1, 10], and IKE [15].
Even though the two primary standards for email encryption
— S/MIME and OpenPGP — use similar cryptographic con-
structions as TLS, SSH, and IKE, email encryption appears
not to be vulnerable to oracle attacks because they require
an online oracle that attackers can query. Email allows send-
ing chosen ciphertexts, but its store-and-forward architecture

1 From: Alice
2 To: Bob
3 Subject: Example
4 Content-Type: multipart/alternative;
5 boundary=alternative
6

7 --alternative // --------------------------------------
8 Content-Type: application/encrypted
9

10 [Base64-encoded ciphertext]
11 --alternative // --------------------------------------
12 Content-Type: application/encrypted
13

14 [Base64-encoded ciphertext]
15 --alternative--

Listing 1: A simplified email containing two alternative
encrypted MIME parts. A MUA can fetch either part
separately via IMAP. It is implementation-specific if fetching
a part depends on the decryption result of another part.

does not allow directly observing the decryption outcome. To
learn about the result of the decryption process, the victim
would need to cooperate with the attacker, e.g., by manually
signaling whether the decryption failed. This process is im-
practical, especially if many oracle queries are required. Thus,
formerly proposed oracle attacks against E2EE email [29, 31]
were deemed unrealistic.

Both cases have in common that the OpenPGP community
considered access to an oracle to be the problem and not the
existence of the oracle itself, as Maury et al. report in their dis-
closure results [29]. This attitude led to the fact that OpenPGP
and S/MIME did not undergo a rigorous restructuring like
TLS 1.3 [38], which prevents many common oracle attacks
on the protocol level. The main questions we tackle in the
paper are:

Are there remotely accessible side-channels leaking the
decryption status in the E2EE email setting? And if not, what
prevents them?

USENIX Association 32nd USENIX Security Symposium 4175

1.1 Remote Oracles in E2EE Email

The Efail attacks [35] showed how to exfiltrate plaintext parts
under the constraints of the store-and-forward email infras-
tructure. It used rich-text features of modern Mail User Agents
(MUAs) and demonstrated how to obtain plaintext with only
a single chosen-ciphertext query to the decryption oracle.
Besides this attack, it showed that modern MUAs have func-
tionality that may give feedback to attackers. However, does
this functionality offer the required granularity and perfor-
mance to allow practical Adaptive Chosen-Ciphertext Attacks
(CCA2) against E2EE email?

Besides the rich-text features of modern MUAs, other
email technologies have the potential for constructing ob-
servable oracles. For example, the Multipurpose Inter-
net Mail Extensions (MIME) support the Content-Type
multipart/alternative to provide multiple semantically
identical messages in different formats. When an email client
cannot load and process a specific MIME part, it may load
and try to process another one. If failed decryptions trigger
this, attackers may use this for oracle attacks.

To describe this further, let us assume that an attacker pro-
vided two encrypted MIME parts (see Listing 1 lines 8–10
and 12–14). The attacker modified the first part to result in
a decryption error — for example, because it contains an in-
correct PKCS#1 v1.5 padding. If the MUA supports loading
alternative MIME parts, it may fetch the second MIME part
if and only if the first did not decrypt successfully. These
fetches lead to distinct network traffic patterns, depending
on the decryption status of the first part. A passive Meddler-
in-the-Middle (MitM) can thus send CCA2 messages over
SMTP to victims and learn about the decryption status by
observing the victims’ IMAP network patterns. These pat-
terns are visible through transport encryption like TLS or
WiFi encryption. As the MUA performs these actions in the
background, the victim may not realize they are under attack.

Additionally, email providers can also implement E2EE
email as a server-side feature. As an additional finding, we
demonstrate a fully working remote exploit of the CBC
padding oracle attack targeting Google’s hosted S/MIME
in Appendix A. This exploit shows how introducing a single
benign-looking change can enable the practicability of CBC
padding oracle attacks on S/MIME.

1.2 Attacker Model

E2EE systems must guarantee confidentiality even in the light
of a compromise of their transport infrastructure. We assume
that the attacker has access to an encrypted victim email and
that they send chosen ciphertexts to the victim via SMTP.
While the attack can be stealthier if the attacker has access to
the victim’s IMAP account, this is not required. The ciphertext
decryption happens either automatically or manually when
the victim opens the email, depending on the MUA and its

Figure 1: Attacker Scenario: The attackers are passive MitM
between the victim’s MUA and their IMAP server. They can
send emails but only observe the (encrypted) traffic between
client and server.

configuration. The attackers’ goal is to decrypt the encrypted
email (or parts of it) using an oracle attack.

We assume that our attackers passively eavesdrop on the
encrypted connections between the victim and the IMAP
server. They cannot manipulate any traffic between the victim
and the mail server. This scenario is visualized in Figure 1.

1.3 Related Work
Security Flaws in email end-to-end encryption. In the
last two decades, multiple publications have described at-
tacks against E2EE emails and signatures through differ-
ent back-channels [33–35]. Poddebniak et al. [35] used ci-
phertext malleability of the Cipher Feedback (CFB) and Ci-
pher Block Chaining (CBC) encryption modes to produce
self-exfiltrating plaintexts. The authors use techniques from
MIME and HTML to automatically exfiltrate plaintexts when
the user opens the decrypted email.

Attacks published in 2000 [27] and 2019 [34] show that
user behavior — i.e., replying to an email — can act as a
decryption oracle allowing to attack encrypted and signed
emails.

Padding Oracle Attacks. Bleichenbacher’s Million Mes-
sage Attack against SSL was first published in 1998 [6]. Re-
searchers have since adapted the attack to different scenar-
ios [2, 3, 7, 24] not only relevant to SSL/TLS. These attacks
include error-, behavior-, and timing-based oracles.

In 2002 Serge Vaudenay introduced the CBC padding ora-
cle attack [44], which researchers have since applied to vari-
ous cryptographic protocols [3, 25, 40].

RFC3218 [37] describes how to mitigate these attacks in
the Cryptographic Message Syntax (CMS) — as used by Se-
cure/Multipurpose Internet Mail Extensions (S/MIME). How-
ever, both attacks seem particularly hard to avoid, as shown
by successful attacks [14, 23] despite countermeasures.

4176 32nd USENIX Security Symposium USENIX Association

In 2020, Beck et al. [4] presented substantial work on au-
tomating the development of Adaptive Chosen-Ciphertext
Attacks using format oracles. While they only analyzed sym-
metric cryptography, it might assist in finding further format
oracle attacks in end-to-end encrypted emails.

Format Oracle Attacks on email end-to-end encryption.
In 2005 Mister et al. [31] found a format oracle attack against
the ad-hoc integrity check functionality — called quick check
— in OpenPGP’s CFB mode that allows an attacker to deter-
mine 16 bits of every plaintext block when accessible.

In 2015, Maury et al. also presented three format oracles
against OpenPGP — the Invalid Identifier, the Double Literal,
and the MDC Packet Header Oracle [29].

Both the quick check and the other three oracles are only
exploitable if the produced error is distinguishable from the in-
tegrity check using the Modification Detection Code (MDC).

1.4 Contributions
• We revisit the cryptographic constructions of the

S/MIME and OpenPGP standards and analyze the po-
tential for Bleichenbacher and Vaudenay-style format
oracles in Section 3. The analysis includes four library
implementations used in S/MIME or OpenPGP capable
mail clients.

• In Section 3.3, we introduce a new format oracle, the
empty line oracle found in iOS Mail.

• We survey side-channels arising from the interplay of
MIME, IMAP, and SMTP, leaking the decryption status
of E2EE email in Section 4.

• The evaluation in Section 5 includes 19 E2EE-capable
and widely used MUAs and uncovers several side-
channels leaking the decryption status. One side-channel
leads to a practical format oracle attack against S/MIME.

• We discuss reasons why most of the tested email clients
are not vulnerable to format oracle attacks and why we
do not consider these a rigorous defense in Section 6.

• We discuss more rigorous countermeasures for side-
channels leaking the decryption status of E2EE email
communication in Section 7.

• Server-hosted E2EE email communication may leak the
decryption status, leading to online oracles. As an ad-
ditional finding, Appendix A describes a fully working
Vaudenay-style exploit against Google Workspaces.

1.5 Disclosure
We responsibly disclosed all issues, i.e., the Vaudenay Padding
oracle in Google Workspaces (see Appendix A) and the empty
line oracle in iOS Mail, to the affected vendors.

00 02 non-zero padding 00 session key

≥ 8 bytes

Test #1Test #2 Test #3

Figure 2: PKCS#1 v1.5 padding. Test #1-#3 mark the
boolean tests identified by Bardou et al.

Google acknowledged the issue in August 2020 and con-
firmed that the S/MIME signature check was a countermea-
sure against Efail. They quickly fixed the problem by not
bouncing unsigned messages. Instead, they now mark un-
signed emails as suspicious, which disables automatic image
loads and serves as a stopgap measure against Efail.

Apple acknowledged the reported issue in October 2021
but, as of September 2022, is still investigating client-side
mitigations for a future release.

2 Background

2.1 Oracle Attacks

In an oracle attack, an attacker queries a system with a cryp-
tographic task and observes a function of the task’s outcome.
If the function validates the decrypted plaintext’s padding, it
is called a padding oracle [3]. More generally, if the function
checks the plaintext’s format, it is called a format oracle [29].

We define an oracle as the function O ∶Q→ A, where q ∈Q
is a query an attacker can send to the oracle (which contains
one or multiple ciphertexts the attacker wants to decrypt), and
a ∈ A is some response they get in return.

In 1998, Daniel Bleichenbacher presented a padding oracle
attack, also known as the “Million Message Attack” [6]. This
attack targets the PKCS#1 v1.5 padding scheme of RSA-
encrypted session keys, as presented in Figure 2. As the name
implies, the original attack required up to 2 million oracle
queries to decrypt an RSA message with a 1024-bit modulus.

However, Bardou et al. improved Bleichenbacher’s attack
and reduced the number of queries by a factor of four on
average [3]. Also, [3] introduced a framework to assess the
usefulness of a PKCS#1 v1.5 padding oracle for an attacker.
They define three boolean tests — marked ’T’ (test not ap-
plied) or ’F’ (test applied) — that an implementation can
perform on the padding of the session key. Test #1 checks
for a zero-byte after the non-zero padding, Test #2 checks
if the padding contains any zero-bytes, and Test #3 checks
the session key length (see Figure 2). This framework gives
an estimation of how many oracle queries are required to
decrypt a session key. For example, a “TTT oracle” — no
tests applied — means that an attack is possible with 9.374
queries on average, while an “FFF oracle” — all tests applied
— means that an attack requires around 226 queries on average

USENIX Association 32nd USENIX Security Symposium 4177

and is less useful for an attacker. Generally, a test that is not
applied (T) reduces the number of oracle queries required.

In 2002, Serge Vaudenay presented another famous padding
oracle attack against the Cipher Block Chaining (CBC)
padding scheme [44]. An attacker can extract the plaintext
of an encrypted message merely by using information about
the correctness of the padding after message decryption. His
oracle takes a ciphertext and returns true if the corresponding
plaintext has correct padding. Access to such an oracle allows
an attacker to reconstruct the plaintext with an average of 128
queries per plaintext byte [44].

Prerequisites and Exploitability It is often difficult to turn
a format oracle into a working exploit. In their seminal work,
Beck et al. presented a method to automate the process [4]. For
example, the authors constructed a format oracle attack based
on the property if a ciphertext decrypts to a valid or invalid
Sudoku field. While this seems an academic amusement, it
shows an important fact: format oracles may come in different
shapes, and it is hard to reason about their exploitability.

Thus, modern encryption technologies exclude this possi-
bility right from the beginning by using authenticated encryp-
tion to make a cryptographic scheme non-malleable. There-
fore, a decryptor must detect a modified ciphertext before
releasing plaintext data and reject the message accordingly.
This way, an attacker will only learn that any ciphertext c′ ≠ c
is not valid, but they will get no information about the plain-
text because no decryption happens in the first place. While
this approach may still be implemented incorrectly in practice,
the consensus is that a decryptor should release no unauthen-
ticated data before verifying the ciphertext.

The two primary standards for email encryption,
S/MIME [36] and OpenPGP [9], do not provide this guar-
antee, and multiple oracle attacks on S/MIME and OpenPGP
were demonstrated in the past [21, 27, 29, 31, 35].

2.2 Email Ecosystem

IMF and MIME In its earliest form, an email is an ASCII-
based message conforming to the message format defined in
RFC561 [5]. This format initially became an internet standard
in [12] and is now referred to as the Internet Message Format
(IMF) [39]. Although the IMF was already created in the early
’70s, it has not changed substantially. Most notably, it is still
a line-based format where an empty line separates the email
headers from the body.

Users’ expectations towards modern emails changed over
time, so the IMF had to include structured and multimedia
data. Because the IMF did not describe the body of a message
but merely the header format, this could be easily achieved by
augmenting IMF with an orthogonal format, the Multipurpose
Internet Mail Extensions (MIME) [16–19, 32]. Thus, today,
most emails are described by the IMF (defining the header
structure) and MIME (defining the body structure).

2.3 IMAP

The Internet Message Access Protocol (IMAP) [11] is a ver-
satile protocol for accessing and organizing messages on a
server. IMAP has many useful features, such as server-side
search capabilities and the option to fetch only specific parts
of a message. Users can use this feature, for example, when
accessing the Internet through a metered connection to down-
load only the text of a message and not any attached files. In
contrast to its predecessor, POP3, IMAP is also suitable for
synchronizing messages on multiple devices because mes-
sages are stored permanently on an IMAP server.

2.4 S/MIME and CMS

S/MIME (Secure/MIME) [41] describes sending and receiv-
ing cryptographically secured MIME data. It focuses on the
“MIME-related parts” of an email, e.g., it defines new MIME
media types but relies on the Cryptographic Message Syntax
(CMS) [22] as its underlying container format to digitally sign,
authenticate, or encrypt arbitrary messages. Corporations and
universities commonly use it for end-to-end encrypted email.

2.5 OpenPGP

Privacy advocates and companies commonly use
OpenPGP [9] as an alternative to S/MIME. The OpenPGP
standard does not define how to encrypt email messages
using OpenPGP but, like the CMS, provides a container
format that can be used as a general-purpose framework
to construct encrypted and signed messages. An additional
standard [13] defines embedding OpenPGP messages into
the MIME format.

Current OpenPGP implementations usually encapsulate
encrypted emails in the “Symmetrically Encrypted Integrity
Protected Data packet”. For integrity protection, the encrypted
payload of this package contains the Modification Detection
Code (MDC) packet, which is a SHA1 hash over the plaintext.

3 Format Oracles in Email E2EE

As a prerequisite for our MIME-based format oracle attacks
on email end-to-end encryption, we analyze the most common
(library) implementations of S/MIME — i.e., Network Secu-
rity Services (NSS) and GPGME (GPGSM) — and OpenPGP
— i.e., GnuPG and OpenPGP.js — for format oracles. We
focus on the two most common padding oracles — the CBC
padding oracle [44] and the Million Message Attack [6] — as
practical examples that nobody has applied to email yet. In
addition, we describe a novel format oracle we found in iOS
Mail: the empty line oracle.

We summarize the results of the library analysis in Table 1
and link the relevant library code sections in Appendix C.

4178 32nd USENIX Security Symposium USENIX Association

Application /
Library

CBC Padding Million Message Attack

Oracle Oracle Query Count

OpenPGP

GnuPG – – 246

OpenPGP.js – – 246

S/MIME

NSS N FFF 226

NSS1 – FFT 219

GPGME C FTF 226

GPGME1 2 – FFT 219

N CBC padding not checked.
C CBC padding checked.
– Not applicable.
1 Replacing the algorithm with one with variable key length.
2 Variable key length algorithms have to be explicitly activated.

Table 1: Summary of findings for library code. Oracle
strength of the Million Message Attack as defined by Bar-
dou et al. [3]. Query count estimations are worst-case based
on the original algorithm. The improved version of the algo-
rithm provides significantly better mean and median counts.

Other Known Format Oracles in OpenPGP We re-
evaluated the Quick Check oracle [31] and the three oracles
found by Maury et al. [29] against modern email clients. We
found that, in practice, no client differentiates between differ-
ent error cases, leaving us unable to exploit these errors.

3.1 Padding Oracle Attack on CBC Padding

Generally, the CBC padding oracle attack is difficult to pre-
vent if CBC padding is in use and access to a good oracle is
available. Therefore, the primary aspect to focus on is the us-
age and implementation of padding checks in the underlying
standards of Secure/Multipurpose Internet Mail Extensions
(S/MIME) and OpenPGP.

OpenPGP in current versions [9] implements encryption
using the Cipher Feedback (CFB) mode, which requires no
padding. Thus, the padding oracle attack on CBC does not
apply to OpenPGP.

S/MIME, in the most widely deployed version 3.2, on the
other hand, uses encryption in CBC mode [36] without in-
tegrity protection. Therefore, S/MIME version 3.2 implemen-
tations are potentially vulnerable to the CBC padding oracle
attack in the presence of a good oracle — i.e., one that sig-
nals correct or incorrect padding. The new S/MIME version
4.0 still requires implementations to support AES-128-CBC,
although AES-GCM is recommended [41].

00 02 random 00 AI session key chksum

Algorithm identifier

Figure 3: OpenPGP Session Key: Content of the RSA en-
crypted session key.

Limitations The CBC padding oracle attack requires the
attacker to adapt queries with the results of previous queries.
Since our attacker cannot directly manipulate messages during
the IMAP connection between the Mail User Agent (MUA)
and the email server, they can only adapt queries with each
new email, requiring at least one email per byte of the original
message the attacker wants to obtain. An attacker can reduce
the number of queries by stacking queries for bytes in different
ciphertext blocks since adaptation is only necessary for bytes
of the same block.

While this would require at least 256 body parts per guessed
byte, we found that no MUA capable of displaying compos-
ite messages restricts the number of parts in a single email.
Therefore, guessing two bytes of a message, albeit from dif-
ferent ciphertext blocks, would require the attacker to send at
least one email.

NSS NSS does not check the full CBC padding of an
S/MIME message but only uses the last padding byte, ef-
fectively preventing the CBC padding oracle attack.

GPGME (GPGSM) GPGSM thoroughly checks the CBC
padding of S/MIME messages.

3.2 Million Message Attack

In the presence of a good oracle, any implementation of
PKCS#1 v1.5 is potentially vulnerable to the Million Message
Attack [6]. However, the attack’s efficiency depends on the
format checks performed when verifying the RSA decrypted
session key [3].

Notably, the OpenPGP RFC [9] extends the typical usage
of PKCS#1 v1.5 by adding additional values to the encoded
session key. The plaintext is PKCS#1 v1.5 encoded and starts
with a one-byte identifier of the symmetric encryption algo-
rithm, followed by the actual key and a two-byte checksum
(see Figure 3). Format checks, i.e., if the algorithm is valid or
the checksum is correct, reduce the chance that a “random”
byte sequence is correct according to this extended-PKCS#1
v1.5 format, making the oracle less valuable to an attacker.

In contrast, because the S/MIME content-encryption algo-
rithm is not protected, an attacker can change it to a variable
key length algorithm, reducing the impact of the length check
on the decrypted session key.

USENIX Association 32nd USENIX Security Symposium 4179

Algorithm 1 Simplified algorithm to decrypt a block using
the empty line oracle. block−1 is the previous ciphertext block,
∣x∣ returns the byte length of x, indexing of byte arrays starts
at zero, and ∣∣ is a concatenation of bytes. oracle(b) returns
true if the decryption of block b contains an empty line.

function DECRYPT_BLOCK(block)
known_bytes← DECRYPT_FIRST_BYTES(block)
for i← 2 to ∣block∣ do

for g← 1 to 255 do
mask← 0i−1 || known_bytes[i−1]⊕0x10
mask←mask || g⊕0x0a || 0∣block∣−i

query← block−1⊕mask∣∣block
if oracle(query) == true then

known_bytes← known_bytes || g
break

end if
end for

end for
return known_bytes

end function

GnuPG GnuPG does not check for the leading zero-byte
on the session key because Multi-Precision Integers (MPIs)
do not support leading null bytes. It tests for the 0x02 byte but
does not check that the random padding is at least 8 bytes long.
However, it checks if the encoded value is longer than 8 bytes.
GnuPG also tests whether the algorithm identifier, key length,
and checksum are valid. Therefore, the oracle on GnuPG
would be considerably weaker than an FTF oracle, making
the Million Message Attack against GnuPG infeasible.

OpenPGP.js OpenPGP.js’ PKCS#1 v1.5 decoder correctly
checks for both the leading zero and the 0x02. It also vali-
dates the random padding length and the zero-byte separator’s
presence. OpenPGP.js checks the algorithm identifier, the key
size, and the key checksum on the decoded value, resulting in
the same oracle strength as GnuPG.

NSS NSS’ PKCS#1 v1.5 decoder checks the secret key’s
prefix for any zero-bytes in the mandatory padding and a zero
somewhere after the first ten bytes. The key length check de-
pends on the symmetric algorithm: NSS checks the decrypted
session key’s size for algorithms with a strict key length re-
quirement, making NSS an FFF oracle. However, if a variable
key length algorithm, e.g., RC4, is used, the key length is not
verified. Because the S/MIME content-encryption algorithm
is not protected, an attacker can change it to a variable key
length algorithm and make NSS an FFT oracle.

GPGME (GPGSM) Like GnuPG’s OpenPGP implementa-
tion, its S/MIME implementation (gpgsm) ignores the leading
zero-byte in the PKCS#1 v1.5 padding due to the big int li-

Algorithm 2 Simplified algorithm to decrypt the first two
bytes of a block using the empty line oracle.

function DECRYPT_FIRST_BYTES(block)
for i← 1 to 255 do

for j← 1 to 255 do
mask← i⊕0x0a || j⊕0x0a || 0∣block∣−2

query← block−1⊕mask∣∣block
if oracle(query) == true then

return i || j
end if

end for
end for

end function

brary. GPGSM checks if the block type byte is 0x02 and if
the non-zero padding is empty. However, it does not check
the minimum padding length. The length of the contained
key must be compatible with the content-encryption algo-
rithm. While it is theoretically possible for an attacker to use
a content-encryption algorithm with variable key length (e.g.,
RC4) to circumvent this check, we found that typical distri-
butions of GPGME do not support any variable key length
algorithms. Therefore, an oracle based on GPGME will typi-
cally be an FTF oracle.

3.3 Empty Line Oracle

The plaintext of a well-formed email has head and body areas
separated by an empty line. If an implementation validates
this and signals the result to an attacker, it constitutes an ex-
ploitable format oracle. This format oracle — as present in
iOS Mail — checks for two consecutive line breaks, repre-
sented by either two \r\n or two \n.

An attacker can exploit the empty line oracle, similar to
how they would exploit a CBC padding oracle. We present
a simplified version of the algorithm that decrypts a single
block in Algorithm 1. The attacker performs the following
steps, as shown in Algorithm 2, to learn the first two bytes of
any ciphertext block. First, the attacker chooses a ciphertext
block to attack1. Second, the attacker iterates through the
first two bytes of the ciphertext by XORing a counter to the
previous block. Third, only if the oracle signals successful
decryption the attacker knows that the first two bytes are \n\n2.
By XORing the original mask, the attacker now learns the
original value of these bytes.

After learning the first two bytes of a block, the attacker
can continue the attack, as shown in Algorithm 1. They XOR
the second (now known) byte to \n and iterate over the third

1If the chosen ciphertext block happens to include two consecutive line
breaks, the second part of the attack can be performed instantaneously with
slight modifications.

2Theoretically, the first four bytes may be \r\n\r\n, which can easily
be checked in a single query by masking the third byte.

4180 32nd USENIX Security Symposium USENIX Association

1 From: Alice
2 To: Bob
3 Subject: Example
4 Content-Type: multipart/alternative;
5 boundary=alternative
6

7 --alternative // ---
8 Content-Type: text/plain
9

10 Plain text body.
11

12 --alternative // ---
13 Content-Type: text/html
14

15 Fancy HTML body.
16

17 --alternative--

Listing 2: A basic multipart/alternative message, containing
two MIME parts. The indention of the MIME parts is only
for readability purposes.

1 C: A FETCH 2 (BODYSTRUCTURE)
2 S: * 2 FETCH (
3 BODYSTRUCTURE
4 (
5 // The first part is a text/plain email.
6 ("TEXT" "PLAIN" NIL NIL NIL "6BIT" 20 2)
7 // The second part is a text/html email.
8 ("TEXT" "HTML" NIL NIL NIL "6BIT" 27 2)
9 // Parts are composed via multipart/alternative.
10 "ALTERNATIVE" ("BOUNDARY" "alternative") NIL NIL
11)
12)
13 S: A OK fetch done.
14 C: B FETCH 2 (BODY[2])
15 S: * 2 FETCH (BODY[2] {25}
16 Fancy HTML body.
17)
18 S: B OK fetch done.

Listing 3: Example IMAP flow of a MUA fetching a part of
the multipart/alternative email from Listing 2.

until they hit \n\n. By XORing the third byte of the mask
with \n, they learn the third byte. The attacker can repeat this
process until an entire plaintext block is known.

Decrypting a 16-byte ciphertext block using this format
oracle requires a substantial number of queries (34,560 on
average or 9,088 under the assumption that the email only
contains ASCII characters) when performing a naive sequen-
tial search. The attacker must execute the attack in its entirety
for each ciphertext block. However, this oracle attack is prac-
tical to decrypt short emails or emails with short blocks of
interest (e.g., password reset codes).

As an optimization, an attacker can batch multiple queries
in a single email to perform a binary search, as exemplified
in Figure 4, reducing the search space dramatically. However,
this optimization causes false positive oracle results due to the
random blocks introduced by manipulating a CBC ciphertext.
While these false positives have to be re-validated with some
backtracking, the optimized attack is still dramatically (about
factor 20 for a 16-byte ASCII block) faster.

While this oracle is independent of the used encryption

Figure 4: Empty Line Oracle: Batching multiple oracle
queries to perform a binary search of the first two bytes of a
block. The guesses of each mail are in a single message part.

mechanism — as it is MUA specific — the attack is prevented
in OpenPGP if the implementation checks the MDC.

4 MIME-Based Oracles

Recent attacks [35] show that the content and context of en-
crypted emails can strongly affect the confidentiality of the
message when rendered by MUAs. Especially the Efail di-
rect exfiltration attacks show that unsafe rendering of MIME
emails enables severe attacks on email encryption. Therefore,
we analyze the relevant MIME standards in search of potential
oracles, i.e., via external requests or IMAP commands.

4.1 General Interaction of MIME and IMAP
We found that MUAs change how they download and display
emails depending on the MIME message structure. While
this is not surprising when considering the display of external
content, email structure can even influence the IMAP message
flow between the email server and the MUA.

While a MUA can download complete messages with-
out taking structure into account, the IMAP protocol allows
fetching specific message parts, e.g., to download only the
plain text content from a multipart/alternative email
(see Listing 2 and Listing 3).

Our IMAP standard analysis shows two instances of inter-
action with the MIME structure. Both allow downloading a
MIME message with separate FETCH commands.

First, a MUA can request the message structure via IMAP’s
BODY or BODYSTRUCTURE fetch attribute. Second, the MUA
retrieves the actual content of a MIME message, which it can
do via partial fetching of specific message parts (Listing 3).

Some MUAs use partial fetching for all composite mes-
sages, not only multipart/alternative emails. For other
messages, parts of the message are fetched consecutively in-
stead of in bulk. We call this behavior lazy fetching in contrast
to fetching complete emails at once — greedy fetching.

USENIX Association 32nd USENIX Security Symposium 4181

1 Content-Type: multipart/alternative;
2 boundary=alternative
3

4 --alternative // ---
5 Content-Type: text/html
6

7
8

9 --alternative // ---
10 Content-Type: application/pkcs7-mime;
11 smime-type=enveloped-data
12

13 [Base64-encoded S/MIME encrypted message]
14

15 --alternative--

Listing 4: Multipart/alternative email containing both an
S/MIME encrypted and an HTML body part. From now on,
we will only provide the headers relevant to our work.

Additionally, we distinguish between two methods of dis-
playing content. A MUA can process all body parts of a
message in bulk and display them afterward — greedy ren-
dering — or choose to render parts of an email as soon as the
processing (e.g., decryption) is complete — lazy rendering.

4.2 Composite Messages
Since meaningful interaction regarding message structure re-
quires emails more complex than a single message body, we
analyzed several MIME composite message formats [18] for
potentially useful behavior. Since the discrete media types —
e.g., text/plain — “must be handled by non-MIME mech-
anisms [and] are opaque to the MIME processors” [18], we
assume that these are less relevant when looking at the behav-
ior of MIME processors — i.e., MUAs. However, the MUA
typically handles the composite media types directly. There-
fore, its behavior can change depending on the structure.

MUAs mainly use the top-level media type message to en-
capsulate email messages inside an email. For example, they
often use message/rfc822 messages for forwarding emails.
Message/partial’s primary use is to split large messages,
e.g., in cases where an intermediate Mail Transfer Agent
(MTA) restricts message sizes. Since all these messages repre-
sent full MIME messages that a MUA can only request in full,
we assume they are handled as single entities and provide no
further information to an attacker.

However, the multipart media types might lead to ob-
servable network patterns. The security subtypes signed and
encrypted [20] enable cryptographic operations, whereas
the other subtypes allow for complex message construction.

Multipart/alternative The alternative subtype allows
bundling multiple alternative representations of the same mes-
sage — usually using different Content-Types — in case the
receiver cannot display a specific message type. A standard-
compliant MIME parser should first try to display the last part
continuing in ascending order until they find a representation
they can show. However, combined with encrypted message

1 Content-Type: multipart/mixed;
2 boundary=mixed
3

4 --mixed // ---
5 Content-Type: text/html
6

7 Unencrypted message part 1.
8
9

10 --mixed // ---
11 Content-Type: application/pkcs7-mime;
12 smime-type=enveloped-data
13

14 [Base64-encoded S/MIME encrypted message]
15

16 --mixed // ---
17 Content-Type: text/html
18

19 Unencrypted message part 3.
20
21

22 --mixed--

Listing 5: Multipart/mixed email containing an S/MIME
encrypted and two text/html body parts.

parts, this process potentially leads to observable behavior
from MUAs.

Presented with the message shown in Listing 4, a MUA
capable of decrypting S/MIME messages would start by pro-
cessing the second body part. If processing this body part
leads to an error — i.e., a failed format check — the MUA
might show the text/html body instead. If the MUA imple-
ments lazy fetching, an attacker can observe the retrieval of
this message part, indicating that the MUA could not decode
the encrypted body part, leading to the following oracle:

O(c) = {decryption failed FETCH BODY[1]

decryption succeeded otherwise.

An attacker can also observe this behavior if they are not a
MitM between the IMAP server and the MUA, if the MUA
loads external content. In this case, the MUA will only request
an image loaded in the first body part if they cannot decrypt
the second part. This leads to the following oracle (where the
server at attacker.example.org observes the GET request):

O(c) = {decryption failed GET ping

decryption succeeded otherwise.

This oracle is even present if the MUA does not employ
lazy fetching but only employs lazy rendering.

Multipart/mixed With the mixed subtype, a sender can
bundle independent message parts in a particular order in a
single email. Since the sequence of message parts is strictly
defined, we assume that any standard-compliant MIME parser
processes these parts in the given order. However, this leads to
interesting behavior when dealing with errors in cryptographic
operations — i.e., a failed format check.

Consider a message as shown in Listing 5. If the encrypted
body part decrypts without errors, the MUA will display all

4182 32nd USENIX Security Symposium USENIX Association

1 Content-Type: multipart/related;
2 boundary=related
3

4 --related // ---
5 Content-Type: text/html
6

7 // Include other parts in iFrames using Content-ID (cid).
8 <iframe src=cid:ping>
9 <iframe src=cid:encrypted>

10 <iframe src=cid:pong>
11

12 --related // ---
13 Content-Type: text/html
14 Content-ID: <ping>
15

16
17

18 --related // ---
19 Content-Type: text/html
20 Content-ID: <pong>
21

22
23

24 --related // ---
25 Content-Type: application/pkcs7-mime;
26 smime-type=enveloped-data
27 Content-ID: <encrypted>
28

29 [base64-encoded S/MIME encrypted message]
30

31 --related--

Listing 6: A multipart/related email with an encrypted part
and two unencrypted parts with external content.

parts in the given order. However, if the decryption of the
encrypted body part fails and lazy fetching is in use, several
potential timing side-channels emerge.

Since the attacker can observe the lazy fetching behavior,
they can measure the time between the MUA’s FETCH request
for the encrypted body part and the request for the HTML
body part. Depending on the decryption process, this time
can differ if a format check fails — e.g., the MUA performs
no symmetric decryption due to a failed format check on the
asymmetrically encrypted session key. Even if there is no
measurable time difference in the cryptographic operations
due to a failed padding check, the time necessary to render a
correctly decrypted ciphertext can be observable. These mea-
surements result in the following oracle, assuming a sufficient
threshold tsuc for successful decryptions has been determined:

O(c) = {decryption failed ∆t < tsuc

decryption succeeded otherwise.

where
∆t = time(FETCH BODY[3])− time(FETCH BODY[2]).

Notably, this oracle can also be observed by a non-MitM
attacker if the MUA employs lazy rendering and displays
external content by checking the timing between the GET
requests using the same oracle with

∆t = time(GET pong)− time(GET ping).

Multipart/related related messages bundle message
parts that have some internal linkage between parts. Since
these links are in a defined order, an attacker can potentially
use this content type to link encrypted parts with unencrypted
external content that leaks timing or error information to the
attacker. We present an example of this in Listing 6. The
oracle is the same timing-based oracle as the mixed oracle.

Additionally, an attacker could mount a more complex at-
tack using crypto gadgets [35], transforming the symmetri-
cally encrypted message into a similar multipart/related
message and observing if related parts are processed. How-
ever, since crypto gadgets would also allow the Efail exfiltra-
tion attacks, we exclude this approach from our analysis.

Multipart/parallel The parallel subtype is often handled
the same as mixed. However, it allows a MUA to load and
display all parts in parallel instead of serial processing. Since
parallel display and decryption would make timing measure-
ments more complex and add more jitter, it is unsuitable for
timing-based attacks. Also, since error conditions in one part
should not affect the processing of other parts, we did not
analyze the parallel subtype in detail.

Multipart/digest MUAs can use Multipart/digest mes-
sages to combine multiple parts of type message/rfc822
into a single message, e.g., to create mailing list digests.
Since, according to RFC 1341 [8], multipart/digest mes-
sages should, in other regards, be handled the same as
multipart/mixed, we excluded it from further analysis.

4.3 Optimizations

Especially when using timing measurements as oracles, the
actual duration of an operation is a critical factor in increasing
the measured operation’s Signal-To-Noise-Ratio. For exam-
ple, the time a MUA requires to decrypt a message symmetri-
cally correlates with the size of the given encrypted message.
By padding the (not integrity-protected) ciphertext with arbi-
trary data, an attacker can increase the required decryption
duration of the MUA in relation to the network jitter.

Even if no specific attacks using composite message types
are possible, they can still improve upon single-part attacks.
An attacker can batch multiple oracle queries using the
multipart/mixed content type, reducing the effective num-
ber of emails necessary for a successful attack.

5 Client Evaluation

To evaluate where oracle attacks against email E2EE are
feasible, we performed a structured analysis of 19 real-world
email clients against these attacks.

USENIX Association 32nd USENIX Security Symposium 4183

Multiple
Encrypted Parts

Fetching Behavior Practical
ExploitClient Body (Parts) Lazy Decryption

Required for practical exploit ✓ ✓

Clients not supporting multiple encrypted parts

Airmail – – H# ◻

eM Client – H# ✓ ? ◻

Mail (macOS) – ~ ◻

MailDroid – ✓ # ◻

Nine – – H# ◻

Outlook 2016 – – ? ◻

Outlook 2019 – – ? ◻

Postbox – – ? ◻

R2Mail2 – H# ✓ H# ◻

Thunderbird – – ? ◻

Clients not automatically fetching single body parts

Claws ✓ H# – H# ◻

Horde IMP ✓ H# ✓ H# ◻

Evolution ✓ H# – H# ◻

KMail ✓ H# – # ◻

Mutt ✓ H# – # ◻

The Bat! ✓ H# – # ◻

Trojitá ✓ H# ✓ H# ◻

Clients not using lazy fetching

MailMate ✓ – H# ◻

Clients fulfilling all criteria

Mail (iOS) ✓ ✓ ∎

Legend

✓ Yes Automatic in background. ∎ Found
– No # Needs explicit user interaction. ◻ Not found
~ Situation dependent H# Upon opening email.

? Not detectable.

Table 2: Results of our evaluation of email clients. We report if clients support encrypted mails with multiple parts, if they
employ lazy fetching, and when they decrypt messages. The final column indicates if we found a practically exploitable oracle.
Greyed out results are included for completeness, but are not directly relevant for exploitability.

5.1 Client Selection

As shown above, even in the presence of an oracle, the Million
Message Attack is impractical against common OpenPGP im-
plementations, and no CBC padding is employed. Therefore,
we restrict our analysis to email clients supporting S/MIME
encryption, which is potentially vulnerable to both attacks.

We selected clients that support S/MIME based on prior
work in [35] and excluded long outdated clients. We present
details on the tested clients in Table 3 in Appendix B. We
performed all tests in the clients’ default configuration.

5.2 Criteria for Successful Attacks

We evaluated the selected clients based on three criteria: sup-
port for multipart messages with encrypted parts, fetching
behavior, and decryption behavior. We filtered the clients step
by step according to these criteria until one client — iOS Mail
— remains that fulfills all of them, and we will present it as a
case study. The detailed results are summarized in Table 2.

A Note on External Content: In addition to our previously
described attacker scenario, we evaluated a weaker attacker
scenario where the attacker is not a MitM but sends emails
containing external content to the victim. We found that many
clients do not load external content without user interaction

4184 32nd USENIX Security Symposium USENIX Association

for privacy reasons, limiting the usefulness of this attacker
scenario. Therefore, we exclude this scenario from further
evaluation. We present results on this in Appendix B.

Multiple Encrypted Parts The first requirement for prac-
tical oracle attacks against MUAs is the support of emails
containing multiple encrypted parts. Ten of the tested clients
did not support multiple encrypted message parts. In most
cases, MUAs displayed additional parts as attachments or did
not display the message at all. This requirement left us with
nine clients to focus on, as shown in the Multiple Encrypted
Parts column in Table 2.

Fetching Behavior The described oracles require specific
behavior on the IMAP channel. First, clients should fetch
email contents as soon as they are available on the IMAP
server to allow for automatic oracles. Additionally, MUAs
must use lazy fetching to employ the described techniques
based on multipart messages.

We constructed multiple test cases to determine MUAs’
fetching behaviors. The tests consist of multipart emails
with an increasing number of parts (up to 100) and part sizes
(up to 10MB total mail size). We summarize the results of
these tests in the Fetching Behavior columns in Table 2.

We found that the client behavior is almost evenly split
between downloading the message in the background (10
clients) and fetching the email body when the user opens it3

(9 clients). Most desktop MUAs use greedy fetching. Except
for eM Client, Trojitá, and macOS’s Mail, all desktop mail
clients only fetch complete messages from the IMAP server.
MacOS Mail switches from greedy fetching to lazy fetching
when the message contains at least 20 message parts and at
the same time is larger than 5 MB.

On the other hand, mobile clients preferred lazy fetching,
presumably due to possibly flaky mobile data connections.
The same is true for Horde, the only web client tested.

This analysis step already left us with only one client to
focus on — iOS Mail.

Decryption Efficient automatic exploitation requires the
client to decrypt encrypted parts in between fetching them.
In some cases, it is evident when the MUA performs the
decryption, i.e., when the user needs to click a decrypt button
(e.g., The Bat!), or a decrypted preview is shown, in other
cases, we could not detect the decryption behavior.

However, we could determine the decryption behavior of
all clients employing lazy fetching. Only iOS and macOS
Mail perform instant decryption of mail parts. However, since
only iOS Mail supports multiple encrypted parts in a single
email, it remains the sole client to analyze.

3Usually, they fetch header information immediately to display metadata.

5.3 Case Study: iOS Mail
We perform additional tests to determine if a format oracle
is exploitable in iOS Mail by crafting emails with multiple
parts and observing the fetching behavior. Specifically, we
crafted emails containing multiple unmodified ciphertexts,
emails containing only manipulated ciphertexts, and emails
containing both.

iOS Mail shows easily distinguishable behavior on the
IMAP channel for failed format checks. It employs lazy fetch-
ing to download multipart/mixed emails and stops fetching
other body parts (with some delay) if a part fails to decrypt.
An attacker can reliably observe this using emails with 100
identical body parts. The resulting oracle is of the form

O(c) =
⎧⎪⎪⎨⎪⎪⎩

decryption succeeded all body parts fetched
decryption failed otherwise.

This oracle is limited to one query per email. However,
since Mail fetches and decrypts messages in the background,
it can be automated reasonably well.

Despite the presence of this oracle, defect CBC padding
cannot be detected since Mail displays corrupted messages for
manipulated padding, not triggering the oracle. The Million
Message Attack is potentially exploitable, but according to
our oracle strength tests, it is an FFF oracle. Therefore, both
oracles remain only potentially exploitable.

However, Mail is vulnerable to the empty line format oracle
from the previous chapter. While this oracle requires a lot of
queries, an attacker can automatically exploit it in the back-
ground. This attack is feasible for emails where only short
blocks (e.g., reset or two-factor codes) are of interest.

Empty Line Oracle The attack algorithm is the one shown
in Algorithm 1. An attacker queries the oracle by sending
an email with the same ciphertext (the actual oracle query)
duplicated as 100 parts of a multipart mixed message. The
attacker then observes the IMAP traffic. If iOS Mail fetched
all body parts, the decryption was successful, meaning that
the message contained an empty line.

We simulated this attack using an iPhone 13 running iOS
15.6 and a customized email server in a lab setting. The iPhone
was idle, the display turned on, and the Mail app was running.
First, we performed a naive sequential search to decrypt a
single 16-byte block of an email known to contain only hex-
adecimal characters, meaning 16 possible byte values per
plaintext byte. Therefore, the worst-case scenario requires
480 queries for a single block. In 20 runs of the described
experiment, it took 11 minutes on average to decrypt a single
block. We extrapolate from our measurements that, on aver-
age, decrypting a 16-byte ASCII plaintext block takes around
4 hours with this approach.

However, batching multiple possible bytes in a single mes-
sage part to query the oracle significantly improves the per-
formance of the attack. With batching, a binary search of the

USENIX Association 32nd USENIX Security Symposium 4185

search space, on average, takes only 12 minutes — including
necessary backtracking — and at least 224 query emails to
decrypt a 16-byte ASCII block.

Interestingly, we found that iOS Mail slows down fetching
after downloading 100 to 150 emails, allowing a query once
every two seconds. The query rate accelerates if the user uses
the device — not necessarily the Mail app. We assume this
is for power-saving reasons and noticed it occurs in unpre-
dictable patterns. Our measurements take these slowdowns
into account. In practice, an attacker could spread the process
over multiple days or sessions to decrypt multiple blocks of
an email.

6 Discussion

Our evaluation shows that most MUAs happen to be not vul-
nerable to practical oracle attacks. However, this is not be-
cause of conscious efforts to prevent these attacks. It merely
stems from limited support of features and implementation
quirks — an observation similar to that of Schneier et al. [26].

Following, we discuss why most MUAs are resistant to for-
mat oracle attacks and why we do not consider this resistance
to be a rigorous defense.

6.1 Incomplete Implementations in MUAs

Email clients resist oracle attacks mainly because of limited
support for specific features. For example, over half of the
tested clients did not support multiple encrypted message
parts in a single email. While this prevents practical oracle
attacks, this hardly seems a conscious choice to mitigate this
type of attack.

However, for some clients, it is plausible that this might
have been a conscious decision to thwart existing attacks on
E2EE emails, such as [33–35].

Another feature of the IMAP standard is the usage of lazy
and selective fetching. This feature can drastically improve
bandwidth usage, i.e., by not downloading message parts with
MIME types that the client cannot display, and usability on
slower networks — e.g., not requiring attachments to be down-
loaded before the user requests them. Unsurprisingly, mainly
mobile clients use lazy and selective fetching, as they com-
monly experience more unstable network environments.

Relying on missing feature support for security is partic-
ularly dangerous since developers might implement these
features later without considering the ramifications for secu-
rity. If, for example, a widely used client starts to encrypt the
message body and attachments separately, this might force
other clients to implement support, too, potentially enabling
the presented attacks.

Restriction of Background Behavior Even those MUA
that support multiple encrypted message parts and use lazy

fetching are not necessarily vulnerable if they do not perform
fetching and decryption in the background.

Our analysis shows that only two tested clients verifiably
decrypt messages before the user opens them. While this
seems a rational choice that drastically reduces the practicality
of format oracle attacks, it comes with disadvantages to user
experience — such as delayed message display and reduced
notification contents.

Furthermore, researchers may discover format oracles in
email E2EE that require only a few queries to exploit. At-
tackers could still exploit these in clients that only fetch or
decrypt emails after the user opens them.

6.2 Implementation Quirks

The last interesting accidental defense against format oracle
attacks lies in the implementation details of email clients.
For example, Mail on iOS is not vulnerable to the Vaudenay
Padding oracle attack simply because it does not validate
the PKCS#7 padding. It only checks the last byte, causing
malformed messages to be displayed. While this prevents
the format oracle attack, it can hardly be considered a rigor-
ous defense since it allows for other manipulations — i.e.,
truncation of the plaintext.

7 Countermeasures

Most clients were not vulnerable to attacks; however, this
resistance was hardly due to a conscious choice. Following,
we describe the most practical countermeasures that actors in-
volved in the email E2EE environment should take to prevent
oracles in the future.

7.1 General Considerations

The most basic way of preventing oracle attacks on any pro-
tocol is not to leak the decryption status to the attacker. In
practice, this is challenging, and even implementations that
care to mitigate specific oracle attacks can still provide subtle
side-channels in unexpected circumstances [14].

An attacker must be unable to distinguish the decryption
results to prevent format oracles reliably. Indistinguishability
includes requiring constant-time operations on all operations
related to format checks. As we show in this paper, this even
includes seemingly benign factors, such as network opera-
tions that only appear for specific decryption statuses. This
is particularly challenging for format oracles in asymmetric
encryption like Bleichenbacher’s Million Message Attack.

For format oracle attacks against symmetric encryption, Au-
thenticated Encryption — ideally Authenticated Encryption
with Associated Data (AEAD) — should be used to prevent
ciphertext manipulation in the first place.

4186 32nd USENIX Security Symposium USENIX Association

7.2 Stopgap Fixes in Email Clients

As discussed, incomplete implementations in many MUAs
did prevent exploitable format oracles despite the presence
of these oracles in OpenPGP and S/MIME. While we think
that this creates an unfortunate conflict between usability
and security, there is not much else clients can do to prevent
oracles until robust fixes are in the standards. Therefore, we
present some reasonable feature restrictions that developers
could implement as a conscious choice for security.

First, for now, it is reasonable not to support multiple en-
crypted messages inside a single email as, to our knowledge,
no MUA sends messages with multiple encrypted parts. This
restriction dramatically reduces the attacks’ effectiveness by
limiting the interaction between the IMAP protocol and en-
crypted messages. Unfortunately, this prevents users from
encrypting and downloading attachments separately.

Second, depending on the user base of the MUA, it might
be reasonable to delay decrypting emails until the user opens
them rather than automatic decryption in the background. This
will prevent oracles that require no user interaction. However,
this countermeasure worsens the user experience of email
E2EE, for example, by not showing previews of new emails
and increasing the time it takes to display encrypted emails.

7.3 Cryptographic Libraries and Standards

Since Bleichenbacher published the Million Message Attack
in 1998, researchers have proposed several effective counter-
measures that cryptographic library developers should imple-
ment. As [7] already highlighted for TLS implementations, for
RSA with the PKCS#1 v1.5 padding scheme, the decryption
of incorrectly formatted messages must be indistinguishable
from correctly formatted messages. For libraries used in email
encryption, this mainly includes indistinguishable timing for
well- and ill-formed plaintexts.

The most straightforward fixes for format oracles on
symmetrically encrypted ciphertexts are Encrypt-then-MAC
schemes or authenticated encryption that prevent an attacker
from manipulating the ciphertext. Integrity protection miti-
gates, among others, the CBC padding oracle attack, but not
attacks on asymmetric ciphers, such as the Million Message
Attack. Switching to a more resilient padding scheme like
RSA-OAEP or moving away from RSA is advisable.

For S/MIME, the current 4.0 standard [41] contains help-
ful security considerations that help mitigate oracle attacks.
Among others, the authors recommend the usage of AEAD
and treating MIME parts as separate entities. They also at
least recommend implementing RSA-OAEP and ECDH. Even
though these recommendations are reasonable, our research
highlights that they should be made even stronger, potentially
even enforcing the usage of AEAD ciphers.

Furthermore, the Million Message Attack becomes harder
or even impractical to exploit with stricter format checks,

as shown in Table 1. Therefore, thorough padding checks
without any (performance-driven) shortcuts are critical here.

7.4 MIME-Layer

The presented oracles are only possible because neither
OpenPGP nor S/MIME protects the original MIME struc-
ture of an E2EE email. The countermeasures proposed by
Schwenk et al. [42] add this protection. They suggest the
usage of “decryption contexts”, a canonicalized string repre-
sentation of the MIME structure of an email.

With the decryption context as Associated Data in an
AEAD scheme, the decryption would break if the MIME
structure changed, preventing the presented oracle attacks and
allowing to encrypt attachments and text separately securely.
Unfortunately, no standard has implemented this so far.

8 Conclusion

Previous work on email E2EE has proven the existence of
format oracles and has shown that their accessibility leads to
full decryption of plaintexts. This paper focuses on the acces-
sibility of format oracles in real-world scenarios. It shows that
more elaborate implementations of IMAP and MIME make
oracles accessible in E2EE email and allow practical attacks
against S/MIME and OpenPGP.

While limited support for IMAP and MIME features in
email clients prevents most attacks in one way or another,
incomplete implementations are at odds with usability, which
creates a conflict between usability and security. Thus, an-
ticipating the implementation of additional features, we ar-
gue that actors should consider proactive countermeasures —
which we could not observe during our research.

While countermeasures to prevent oracle feedback may
improve the security of E2EE email in the short term, they
only obscure the existence of oracles. Instead, the malleability
of ciphertexts should be considered the root cause of effective
oracle attacks and mitigated.

Our work supports the criticism raised by related work that
currently deployed E2EE email standards are cryptographi-
cally fragile and reinforces the need for better cryptographic
primitives in S/MIME and OpenPGP.

Acknowledgments We thank the USENIX reviewers for
their insightful comments on this paper. We also thank Uwe
Sommer of NetCon Consulting for supporting us in testing
Google’s hosted S/MIME solution.

Fabian Ising was supported by a graduate scholarship from
Münster University of Applied Sciences and the research
project “SEAN”, part of the postgraduate research training
group North Rhine-Westphalian Experts on Research in Dig-
italization (NERD.NRW), funded by the Ministry of Cul-
ture and Science of North Rhine Westphalia (MKW NRW).

USENIX Association 32nd USENIX Security Symposium 4187

Christoph Saatjohann was supported by the research project
“MedMax”, part of NERD.NRW, funded by the MKW NRW.

This research work was supported by the National Research
Center for Applied Cybersecurity ATHENE.

References

[1] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J.
Watson. Plaintext Recovery Attacks Against SSH. In
Proceedings of the 2009 30th IEEE Symposium on Se-
curity and Privacy, SP ’09, pages 16–26, Washington,
DC, USA, 2009. IEEE Computer Society.

[2] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
Breaking TLS using SSLv2. In 25th USENIX Secu-
rity Symposium (USENIX Security 16), pages 689–706,
Austin, TX, August 2016. USENIX Association.

[3] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto,
Lorenzo Simionato, Graham Steel, and Joe-Kai Tsay. Ef-
ficient Padding Oracle Attacks on Cryptographic Hard-
ware. In Advances in Cryptology–CRYPTO 2012, pages
608–625. Springer, 2012.

[4] Gabrielle Beck, Maximilian Zinkus, and Matthew Green.
Using SMT Solvers to Automate Chosen Ciphertext
Attacks. Cryptology ePrint Archive, Report 2019/958,
2019. https://eprint.iacr.org/2019/958.

[5] A.K. Bhushan, K.T. Pogran, R.S. Tomlinson, and J.E.
White. Standardizing Network Mail Headers, September
1973. RFC0561.

[6] Daniel Bleichenbacher. Chosen Ciphertext Attacks
Against Protocols Based on the RSA Encryption Stan-
dard PKCS# 1. In Annual International Cryptology
Conference, pages 1–12. Springer, 1998.

[7] Hanno Böck, Juraj Somorovsky, and Craig Young. Re-
turn Of Bleichenbacher’s Oracle Threat (ROBOT).
In 27th USENIX Security Symposium (USENIX Secu-
rity 18), pages 817–849, Baltimore, MD, August 2018.
USENIX Association.

[8] N. Borenstein and N. Freed. MIME (Multipurpose Inter-
net Mail Extensions): Mechanisms for Specifying and
Describing the Format of Internet Message Bodies, June
1992. RFC1341.

[9] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. OpenPGP Message Format, November 2007.
RFC4880.

[10] Core Security. SSH Protocol 1.5 Session Key Recovery
Vulnerability. https://www.coresecurity.com/
core-labs/advisories/ssh-protocol-15-
session-key-recovery-vulnerability, 2001.

[11] M. Crispin. INTERNET MESSAGE ACCESS PROTO-
COL - VERSION 4rev1, March 2003. RFC3501.

[12] D. Crocker. STANDARD FOR THE FORMAT OF
ARPA INTERNET TEXT MESSAGES. RFC 822, Au-
gust 1982.

[13] M. Elkins, D. Del Torto, R. Levien, and T. Roessler.
MIME Security with OpenPGP, August 2001.
RFC3156.

[14] N. J. Al Fardan and K. G. Paterson. Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols. In 2013
IEEE Symposium on Security and Privacy, pages 526–
540, May 2013.

[15] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam
Czubak, and Marcin Szymanek. The Dangers of Key
Reuse: Practical Attacks on IPsec IKE. In 27th USENIX
Security Symposium (USENIX Security 18), pages 567–
583, Baltimore, MD, August 2018. USENIX Associa-
tion.

[16] N. Freed and N. Borenstein. Multipurpose Internet Mail
Extensions (MIME) Part Five: Conformance Criteria
and Examples, November 1996. RFC2049.

[17] N. Freed and N. Borenstein. Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, November 1996. RFC2045.

[18] N. Freed and N. Borenstein. Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types, November
1996. RFC2046.

[19] N. Freed, J. Klensin, and J. Postel. Multipurpose In-
ternet Mail Extensions (MIME) Part Four: Registration
Procedures, November 1996. RFC2048.

[20] J. Galvin, S. Murphy, S. Crocker, and N. Freed. Secu-
rity Multiparts for MIME: Multipart/Signed and Multi-
part/Encrypted, October 1995. RFC1847.

[21] Matthew Green. What’s the matter
with PGP?, August 2014. https://
blog.cryptographyengineering.com/2014/08/
13/whats-matter-with-pgp/.

[22] R. Housley. Cryptographic Message Syntax (CMS),
September 2009. RFC5652.

[23] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. Lucky 13 Strikes Back. In Proceedings
of the 10th ACM Symposium on Information, Computer

4188 32nd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2019/958
https://www.coresecurity.com/core-labs/advisories/ssh-protocol-15-session-key-recovery-vulnerability
https://www.coresecurity.com/core-labs/advisories/ssh-protocol-15-session-key-recovery-vulnerability
https://www.coresecurity.com/core-labs/advisories/ssh-protocol-15-session-key-recovery-vulnerability
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/
https://blog.cryptographyengineering.com/2014/08/13/whats-matter-with-pgp/

and Communications Security, ASIA CCS ’15, pages
85–96, New York, NY, USA, 2015. ACM.

[24] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky.
Bleichenbacher’s Attack Strikes again: Breaking
PKCS#1 v1.5 in XML Encryption. In Computer Se-
curity - ESORICS 2012 - 17th European Symposium on
Research in Computer Security, Pisa, Italy, September
10-12, 2012. Proceedings, pages 752–769, 2012.

[25] Tibor Jager and Juraj Somorovsky. How To Break XML
Encryption. In The 18th ACM Conference on Computer
and Communications Security (CCS), October 2011.

[26] Kahil Jallad, Jonathan Katz, and Bruce Schneier. Imple-
mentation of Chosen-Ciphertext Attacks against PGP
and GnuPG. In Agnes Hui Chan and Virgil Gligor, edi-
tors, Information Security, pages 90–101, Berlin, Hei-
delberg, 2002. Springer Berlin Heidelberg.

[27] Jonathan Katz and Bruce Schneier. A Chosen Ciphertext
Attack Against Several E-Mail Encryption Protocols. In
Proceedings of the 9th Conference on USENIX Secu-
rity Symposium - Volume 9, SSYM’00, pages 18–18,
Berkeley, CA, USA, 2000. USENIX Association.

[28] J. Klensin. Simple Mail Transfer Protocol, October 2008.
RFC5321.

[29] Florian Maury, Jean-René Reinhard, Olivier Levillain,
and Henri Gilbert. Format Oracles on OpenPGP. In
Kaisa Nyberg, editor, Topics in Cryptology — CT-RSA
2015, pages 220–236, Cham, 2015. Springer Interna-
tional Publishing.

[30] Christopher Meyer, Juraj Somorovsky, Eugen Weiss,
Jörg Schwenk, Sebastian Schinzel, and Erik Tews. Revis-
iting SSL/TLS Implementations: New Bleichenbacher
Side Channels and Attacks. In USENIX Security Sym-
posium, pages 733–748, 2014.

[31] Serge Mister and Robert Zuccherato. An Attack on
CFB Mode Encryption As Used By OpenPGP. Cryp-
tology ePrint Archive, Report 2005/033, 2005. https:
//eprint.iacr.org/2005/033.

[32] K. Moore. MIME (Multipurpose Internet Mail Exten-
sions) Part Three: Message Header Extensions for Non-
ASCII Text, November 1996. RFC2047.

[33] Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Hanno Böck, Sebastian Schinzel, Juraj Somorovsky,
and Jörg Schwenk. “Johnny, you are fired!” – Spoof-
ing OpenPGP and S/MIME Signatures in Emails. In
28th USENIX Security Symposium (USENIX Security
19), pages 1011–1028, Santa Clara, CA, August 2019.
USENIX Association.

[34] Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Sebastian Schinzel, and Jörg Schwenk. Re: What’s Up
Johnny? In Robert H. Deng, Valérie Gauthier-Umaña,
Martín Ochoa, and Moti Yung, editors, Applied Cryptog-
raphy and Network Security, pages 24–42, Cham, 2019.
Springer International Publishing.

[35] Damian Poddebniak, Christian Dresen, Jens Müller,
Fabian Ising, Sebastian Schinzel, Simon Friedberger,
Juraj Somorovsky, and Jörg Schwenk. Efail: Breaking
S/MIME and OpenPGP Email Encryption using Exfil-
tration Channels. In 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, 2018. USENIX
Association.

[36] B. Ramsdell and S. Turner. Secure/Multipurpose In-
ternet Mail Extensions (S/MIME) Version 3.2 Message
Specification, January 2010. RFC5751.

[37] E. Rescorla. Preventing the Million Message At-
tack on Cryptographic Message Syntax, January 2002.
RFC3218.

[38] E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3, 2018. RFC8446.

[39] P. Resnick. Internet Message Format, October 2008.
RFC5322.

[40] Juliano Rizzo and Thai Duong. Practical Padding Ora-
cle Attacks. In Proceedings of the 4th USENIX Confer-
ence on Offensive Technologies, WOOT’10, pages 1–8,
Berkeley, CA, USA, 2010. USENIX Association.

[41] J. Schaad, August Cellar, B. Ramdell, and S. Turner. Se-
cure/Multipurpose Internet Mail Extensions (S/MIME)
Version 4.0 Message Specification, 1998. RFC8551.

[42] Jörg Schwenk, Marcus Brinkmann, Damian Poddebniak,
Jens Müller, Juraj Somorovsky, and Sebastian Schinzel.
Mitigation of Attacks on Email End-to-End Encryption.
In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page
1647–1664, New York, NY, USA, 2020. Association for
Computing Machinery.

[43] U.S. Food & Drug Administration. CFR - Code
of Federal Regulations Title 21. https://
www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfcfr/CFRSearch.cfm?CFRPart=11&showFR=1,
April 2020.

[44] Serge Vaudenay. Security Flaws Induced by CBC
Padding - Applications to SSL, IPSEC, WTLS ... In
Proceedings of the International Conference on the The-
ory and Applications of Cryptographic Techniques: Ad-
vances in Cryptology, EUROCRYPT ’02, pages 534–
546, London, UK, UK, 2002. Springer-Verlag.

USENIX Association 32nd USENIX Security Symposium 4189

https://eprint.iacr.org/2005/033
https://eprint.iacr.org/2005/033
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11&showFR=1
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11&showFR=1
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11&showFR=1

1 S: 554 5.7.5 To prevent known S/MIME vulnerabilities,
2 Gmail does not accept S/MIME encrypted messages
3 without an accompanying valid S/MIME signature.

Listing 7: SMTP reply for encrypted messages without a valid
signature.

A Attacking Google’s Hosted S/MIME

Business policies, legal provisions, or branch-specific regula-
tions often require access to plaintext emails for threat anal-
ysis, spam filtering, or mandatory business communication
archiving [43]. For compliance reasons and efficient certifi-
cate management, such access is usually granted on a central
instance, precluding client end-to-end encryption. So-called
Secure Email Gateways allow the upload of key material to en-
crypt and decrypt emails before they transfer them to external
contacts or the mailbox owner. Consequently, this service has
full access to the decrypted message and may be vulnerable
to decryption oracle attacks.

For the sender, such a gateway acts as a regular SMTP
server. The Simple Mail Transfer Protocol (SMTP) [28], in
combination with commons extensions introduced by the
Extended Simple Mail Transfer Protocol (ESMTP), is the
primary way to transmit emails. It follows a line-based com-
mand/reply model. A client uses successive commands to
submit the email to the server, who answers with specific
reply codes, indicating if the command was successful or not.

The email gateway can either use SMTP replies during
transmission or return — bounce — the email afterward to
inform the sender about an error. A successful oracle attack
requires one of these mechanisms to provide enough informa-
tion about the format of the decrypted message to the attacker.

We found a practical attack against Google’s Hosted
S/MIME functionality that shows the practicability of format
oracle attacks in email E2EE in specific scenarios.

A.1 Hosted S/MIME

Google offers Hosted S/MIME4 functionality for Google
Workspace. Users can upload private keys to view S/MIME-
encrypted emails in plaintext in the Gmail web interface or
retrieve them via IMAP. In August 2020, Google implemented
the SMTP error response listed in Listing 7 on their SMTP
servers to reject encrypted messages without a valid signature.

This mechanism prevents malicious ciphertext modifica-
tions, typically used for Efail exploits [35]. However, such
behavior forms an oracle that signals if a given S/MIME en-
crypted email contains a valid inner signature.

4“Enable hosted S/MIME for message encryption” https:
//support.google.com/a/answer/6374496 (accessed 2022-05-31).

A.2 CBC Padding Oracle Attack
The service decrypts the ciphertext to extract and validate the
inner signature. Most S/MIME messages use the CBC encryp-
tion mode with PKCS #5 padding. Therefore, for successful
decryption, this padding has to be valid.

We can use this behavior to create a CBC padding ora-
cle [44] O(c) that allows us to decrypt any S/MIME message
encrypted for a Google Hosted S/MIME account. First, the
attacker invalidates the inner signature of the encrypted email.
As inner signatures are usually within the last blocks of an
S/MIME ciphertext, an attacker can invalidate them by remov-
ing the final block, which truncates the signature, and forces
the signature verification to fail. As a result, the email con-
tains either a ciphertext with no inner signature or an invalid
inner signature. The Gmail SMTP server will reject both upon
successful decryption.

For the actual attack, the attacker increments the last byte of
the penultimate block of an S/MIME ciphertext and sends the
tampered ciphertext to the Gmail SMTP Server. The server
immediately decrypts the message. If the PKCS #5 padding
within the modified plaintext is invalid, the Gmail service will
accept the message. If the padding is valid, the Gmail service
tries to validate the inner signature, which fails, and rejects
the message with the SMTP error code 554-5.7.5.

O(c) =
⎧⎪⎪⎨⎪⎪⎩

decryption failed mail accepted
decryption succeeded SMTP error 554-5.7.5

The attacker repeats this process for all possible byte values
or until they get the SMTP error code 554-5.7.5 (on average,
128 trials per plaintext byte)5. The attacker has now learned
the last byte of the message and continues the process to
decrypt the other bytes.

After our report, Google resolved the issue by no longer-
bouncing unsigned messages. Instead, they now mark un-
signed emails as suspicious, which disables automatic image
loads and serves as a stopgap measure against Efail.

This vulnerability proves that format oracle attacks against
S/MIME encrypted emails are realistic under certain condi-
tions. In this case, it was a seemingly unrelated change that
severely impedes the confidentiality of encrypted messages.

A.3 Countermeasures
Section 6.3 in the RFC5321 [28] (SMTP) discusses several
ways of dealing with unsolicited and hostile messages. In the
context of this paper, it is evident that any oracle behavior
should be prevented. On the other hand, silent message drop-
ping without informing the sender should only be considered
in rare cases. A good way of handling encryption and format
errors might be to notify the receiver about blocking potential
fraudulent messages.

5Google rate limits IP addresses after about 1,000 requests. This can be
circumvented by changing IP addresses after roughly 8 decrypted bytes.

4190 32nd USENIX Security Symposium USENIX Association

https://support.google.com/a/answer/6374496
https://support.google.com/a/answer/6374496

B Details on Client Selection and Evaluation
of External Content Loading

B.1 Client Selection
Since we restricted our analysis to S/MIME capable MUAs,
we selected clients that support S/MIME based on prior work
in [35]. We excluded long outdated clients, namely:

• Outlook 2007 to 2013

• Windows 10 Mail

• Windows Live Mail

• IBM Notes

We list the remaining clients and tested versions in Table 3.

B.2 External Content Loading
In addition to evaluating email clients’ handling of multiple
encrypted parts, fetching behavior, and decryption time, we
analyzed all clients for their support of external content. We
report whether clients show external content in emails at all
and if they display it upon opening the email or if they re-
quire explicit user interaction, e.g., acknowledging a privacy
warning. We report the results in the third column of Table 3.

Only The Bat!, Airmail, and macOS Mail load external
content in emails by default. While some clients enable ex-
ternal content for specified senders, we could not distinguish
between correct and incorrect formats in encrypted emails
through timing measurements of external content requests.
Therefore, they did not help our format oracle attacks.

We assume that most clients block automatic external con-
tent loading due to privacy concerns. Notably, our observa-
tions differ from those of Poddebniak et al. in 2018 [35]. We
assume that some developers have taken steps to mitigate
these attacks or became aware of privacy implications only
after the publication.

Client Version External Content Support

Windows

eM Client 8.2.1473 #
Outlook 2016 2108 #
Outlook 2019 2108 #
Postbox 7.0.49 #
The Bat! 9.4.4 H#

Cross-Platform (tested on Linux)

Claws 4.0.0 –
Mutt 2.1.3 –
Thunderbird 91.1.2 #
Trojitá 0.7-5 #

Linux

Evolution 3.40.4 #
KMail 5.18.1 #

macOS

Airmail 5.0.7 H#
Mail macOS 11.6 H#
MailMate 1.13.2 #

iOS

Mail iOS 15.6 #

Android

MailDroid 5.09 #
Nine 4.9.1b #
R2Mail2 2.54.305 #

Web

Horde IMP 6.2.27 #

Legend

– Not supported.
Needs explicit user interaction to load.
H# Loads upon opening email.
 Loads automatically in the background.

Table 3: Results of our External Content Evaluation. We
report if clients support external content and when it is loaded.

USENIX Association 32nd USENIX Security Symposium 4191

C List of Relevant Code Sections in Cryptographic Libraries

C.1 GnuPG
• PKCS#1v1.5 padding checks for OpenPGP messages:
https://github.com/gpg/gnupg/blob/25ae80b8eb6e9011049d76440ad7d250c1d02f7c/g10/pubkey-enc.c, lines
280 to 377.

• PKCS#1 v1.5 padding checks for S/MIME messages:
https://github.com/gpg/gnupg/blob/25ae80b8eb6e9011049d76440ad7d250c1d02f7c/sm/decrypt.c, lines 855
to 883.

C.2 OpenPGP.js
• PKCS#1 v1.5 padding checks:
https://github.com/openpgpjs/openpgpjs/blob/39aa742c7ab5a61f07bcf30fb7e3daa34ae8ad8e/src/
crypto/pkcs1.js, lines 97 to 114.

• Check of the encoded data inside a public key encrypted session key packet:
https://github.com/openpgpjs/openpgpjs/blob/31fe960261519944b00a0d9d9887abd3ef863c22/src/
packet/public_key_encrypted_session_key.js, lines 112 to 136.

C.3 Mozilla NSS
• PKCS#1 v1.5 padding checks:
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d66cf5217b239b42a/lib/freebl/
rsapkcs.c, lines 1091 to 1215.

• Key validation function of Mozilla NSS:
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d66cf5217b239b42a/lib/softoken/
pkcs11.c, lines 1310 to 1425.

• CBC padding checks for S/MIME messages:
https://github.com/nss-dev/nss/blob/9dab43371d4d924419523e18ba84f02804880533/lib/smime/
cmscipher.c, lines 365 to 540.

4192 32nd USENIX Security Symposium USENIX Association

https://github.com/gpg/gnupg/blob/25ae80b8eb6e9011049d76440ad7d250c1d02f7c/g10/pubkey-enc.c
https://github.com/gpg/gnupg/blob/25ae80b8eb6e9011049d76440ad7d250c1d02f7c/sm/decrypt.c
https://github.com/openpgpjs/openpgpjs/blob/39aa742c7ab5a61f07bcf30fb7e3daa34ae8ad8e/src/crypto/pkcs1.js
https://github.com/openpgpjs/openpgpjs/blob/39aa742c7ab5a61f07bcf30fb7e3daa34ae8ad8e/src/crypto/pkcs1.js
https://github.com/openpgpjs/openpgpjs/blob/31fe960261519944b00a0d9d9887abd3ef863c22/src/packet/public_key_encrypted_session_key.js
https://github.com/openpgpjs/openpgpjs/blob/31fe960261519944b00a0d9d9887abd3ef863c22/src/packet/public_key_encrypted_session_key.js
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d66cf5217b239b42a/lib/freebl/rsapkcs.c
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d66cf5217b239b42a/lib/freebl/rsapkcs.c
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d66cf5217b239b42a/lib/softoken/pkcs11.c
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d66cf5217b239b42a/lib/softoken/pkcs11.c
https://github.com/nss-dev/nss/blob/9dab43371d4d924419523e18ba84f02804880533/lib/smime/cmscipher.c
https://github.com/nss-dev/nss/blob/9dab43371d4d924419523e18ba84f02804880533/lib/smime/cmscipher.c

	Introduction
	Remote Oracles in E2EE Email
	Attacker Model
	Related Work
	Contributions
	Disclosure

	Background
	Oracle Attacks
	Email Ecosystem
	IMAP
	S/MIME and CMS
	OpenPGP

	Format Oracles in Email E2EE
	Padding Oracle Attack on CBC Padding
	Million Message Attack
	Empty Line Oracle

	MIME-Based Oracles
	General Interaction of MIME and IMAP
	Composite Messages
	Optimizations

	Client Evaluation
	Client Selection
	Criteria for Successful Attacks
	Case Study: iOS Mail

	Discussion
	Incomplete Implementations in MUAs
	Implementation Quirks

	Countermeasures
	General Considerations
	Stopgap Fixes in Email Clients
	Cryptographic Libraries and Standards
	MIME-Layer

	Conclusion
	Attacking Google's Hosted S/MIME
	Hosted S/MIME
	CBC Padding Oracle Attack
	Countermeasures

	Details on Client Selection and Evaluation of External Content Loading
	Client Selection
	External Content Loading

	List of Relevant Code Sections in Cryptographic Libraries
	GnuPG
	OpenPGP.js
	Mozilla NSS

